
Software Verification
From programs to complex systems

Luca Di Stefano

University of Parma, 9 December 2024

$ whoami

2016–2020 PhD at GSSI, L’Aquila, Italy
• Modelling collective adaptive systems
• Formal verification of CAS models

2020–2022 Postdoc at INRIA Grenoble, France
• Compositional verification of CAS
• Support more expressive properties

2022–2024 Postdoc at GU/Chalmers, Göteborg, Sweden
• Model-checking agents with reconfiguration
• Reactive synthesis over infinite-state arenas

now Postdoc at TU Wien, Austria
• All of the above ©

Get in touch: luca dot di dot stefano at tuwien.ac.at

https://lucadistefano.eu

2024-12-09 Software Verification, Di Stefano 2 / 36

https://lucadistefano.eu

Overview (1/3)

Verification: Rigorous assessment of the
correctness of a system
Software: The system is a program

1 int divBy2(int n) {
2 return n/2
3 }
4
5 int main() {
6 int x
7 int y = divBy2(x)
8 assert(y * 2 == x)
9 }

x stores an arbitrary integer
value (ISO C std. 6.2.4.5)

Can the program reach
line 8 and violate y*2==x?

• No: return PASS
• Yes: return FAIL + a

sequence of steps
leading to the violation
(counterexample)

2024-12-09 Software Verification, Di Stefano 3 / 36

Overview (2/3)
CBMC version 6.4.0 (cbmc-6.4.0) 64-bit arm64 macos
[...]
** Results:
divBy2.c function main
[main.assertion.1] line 8 assertion y * 2 == x: FAILURE

Trace for main.assertion.1:

State 16 file divBy2.c function main line 6 thread 0
--
return_value_nondet=3 (00000000 00000000 00000000 00000011)

[...]
State 26 file divBy2.c function main line 7 thread 0
--
y=1 (00000000 00000000 00000000 00000001)

Violated property:
file divBy2.c function main line 8 thread 0
assertion y * 2 == x
y * 2 == x

** 1 of 1 failed (2 iterations)
VERIFICATION FAILED

2024-12-09 Software Verification, Di Stefano 4 / 36

Overview (3/3)

1 int divBy2(int x) {
2 return x/2
3 }
4
5 int main() {
6 int x = *
7 assume(x % 2 == 0)
8 int y = divBy2(x)
9 assert(y * 2 == x)

10 }

assume(cond) restricts
analysis to executions where
cond != 0

Useful to prune out
unwanted counterexamples,
model the environment in
which the code will run, etc.

CBMC version 6.4.0 (cbmc-6.4.0) 64-bit arm64 macos
Type-checking divby2.safe
[...]
** Results:
divby2.safe.c function main
[main.assertion.1] line 9 assertion y * 2 == x: SUCCESS

2024-12-09 Software Verification, Di Stefano 5 / 36

Model checking

One way to implement formal verification

Given formal representations of the system and of
what makes it correct, exhaustively explore the
former and look for violations

Essentially, it’s proof by lack of counterexamples

© Fully automated
© Can be applied in many domains (HW, SW,

protocols, . . .)
© Works well with concurrency
§ Mainly scalability (we’ll see)
§ Some expertise required

2024-12-09 Software Verification, Di Stefano 6 / 36

There are other ways. . .

Testing

© Very widespread
© Can be surprisingly

effective (e.g., fuzzing)

§ Cannot prove
correctness

§ Concurrency bugs?

Theorem proving

© Can exploit
sophisticated tactics

© High expressiveness

§ Typically only
semi-automated

§ Requires expert
knowledge

2024-12-09 Software Verification, Di Stefano 7 / 36

What about abstract interpretation?

Roots
AbsInt: collecting semantics and lattice theory
ModChk: operational semantics and modal logic

Goals
AbsInt: building static analysers
ModChk: proving properties

In practice, they are routinely used together
(more on that later)

2024-12-09 Software Verification, Di Stefano 8 / 36

Model Checking in a nutshell

Input:

1. A Kripke structure M
2. A property φ describing “good” computations

Checks whether M |= φ

“φ holds in M”
“M models/is a model for φ” (hence the name)

Output: PASS, or FAIL + counterexample

Caution
The term “model” creates lots of confusion. . .

2024-12-09 Software Verification, Di Stefano 9 / 36

Kripke structure

Assume you have a (finite) set AP of atomic
propositions. Each a ∈ AP represents a basic “fact”,
e.g., “we are at line 8” or “the value of x is 0”.

Then a Kripke structure is 〈S, I,R,L〉

S: States (finite)
I ⊆ S: Initial states
R ⊆ S× S: Transition relation (total1)
L : S→ 2AP: Labelling function: L(s) tells you
which APs hold in state s

1I.e., every state has at least one outgoing transition

2024-12-09 Software Verification, Di Stefano 10 / 36

(Linear) Temporal Properties

Consider paths through M rooted in an initial state

R is total ⇒ Infinite-length paths π = s1s2s3 . . .
with si R si+1 for every i (aka si→ si+1)

A property describes how good paths should be.
Model checking = look for bad paths

Paths are just ordered sequences of states, hence
“linear” and “temporal”

(Not the only logical framework)

2024-12-09 Software Verification, Di Stefano 11 / 36

LTL in a nutshell (1/2)

A logic for linear temporal properties φ

When does a state si in a path satisfy φ? (si |= φ)

true always
a iff a ∈ L(si)

¬φ iff si ̸|= φ

φ1 ∧ φ2 iff si |= φ1 and ∧ si |= φ2

Ok, but where is the temporal part?

2024-12-09 Software Verification, Di Stefano 12 / 36

LTL in a nutshell (2/2)

si |=



























Xφ iff si+1 |= φ [next]
φ1 U φ2 iff ∃j ≥ i.sj |= φ2∧

∧∀k.i ≤ k < j⇒ sk |= φ1 [until]
Fφ same as true U φ [finally]
Gφ same as ¬F¬φ [globally]

si

Xφ

si+1

φ

si

φ1

φ1 U φ2

si+1

φ1

sj−1

φ1

sj

φ2

Path π = s1s2 . . . satisfies φ iff s1 |= φ

2024-12-09 Software Verification, Di Stefano 13 / 36

Explicit-state model checking 1/2

1 int divBy2(int x) {
2 return x/2
3 }
4
5 int main() {
6 int x;
7 int y = divBy2(x)
8 assert(y * 2 == x)
9 }

φ = G(lineIs8⇒ yTimes2Eqx)

Initial steps:
1. Turn program into a

Kripke Structure M
2. Negate the property:

F(lineIs8∧¬yTimes2Eqx)

3. Now turn the negated property into a Büchi
automaton A. These are automata that recognize
infinite words (ω-regular). A word is accepted if it
makes A visit an accepting state infinitely many
times.

2024-12-09 Software Verification, Di Stefano 14 / 36

Explicit-state model checking 2/2

4. Explore the synchronous product M⊗ A
(Intuitively, this captures how A evolves when fed
paths over M)

5. If you find a path in M⊗ A that loops through an
accepting state, it represents a path in M that
violates φ (counterexample). Thus, M ̸|= φ

6. Otherwise, M |= φ

Explicit-state = Direct representation of M

2024-12-09 Software Verification, Di Stefano 15 / 36

Complexity of LTL model checking

O(|M| · 2|φ|)

§ The automaton construction is exponential
§ |M| ∼doubles for each added AP

(state space explosion problem)

Many attempts at mitigation

• On-the-fly MC: only keep portions of M in memory
• Compositional MC: split M, solve smaller problems,

compose these together
• Symmetry reductions

2024-12-09 Software Verification, Di Stefano 16 / 36

Symbolic Model Checking

A way to overcome state space explosion

Define your system/program as:

• A vector of n (finite-state) variables x = x1, . . . ,xn
• A predicate init(x) that describes the initial states
• A set of n functions next(xi) = fi(x) describing how
xi changes from one state to the next

Explicit-state MC = enumerate all initial states, use
next to compute successors, construct M,. . .

Symbolic MC = directly manipulate init, next

2024-12-09 Software Verification, Di Stefano 17 / 36

Symbolic Model Checking

For simplicity let x a vector of Booleans

• init(x) is already a Boolean function
• We can always express the system
next(x1), . . . ,next(xn) as

R(x1, . . . ,xn,x
′
1, . . . ,x

′
n
)

such that x′ is a successor of x iff R(x,x′) = true

We can store/manipulate these
(and any Boolean function) with
efficient data structures called
Binary Decision Diagrams (BDDs)

Picture credit: Wikipedia

2024-12-09 Software Verification, Di Stefano 18 / 36

https://commons.wikimedia.org/wiki/File:BDD_simple.svg

Model-checking Gp(x), symbolically

Intuitively: first compute BDD for all reachable states,
then intersect with negated p

states = BDD(false) // BDD for an empty set
frontier = BDD(init)
tr = BDD(R)
notP = BDD(¬p)
do {

// Update visited states
states = states ∨ frontier
// Update frontier
frontier = Image(states , tr) ∧¬states

} while (frontier not empty)
return PASS if (states∧ notP is empty) else FAIL

Image(states, tr) is the (BDD for the) set of
successors of states according to tr

(Checking BDDs for emptiness is easy)

2024-12-09 Software Verification, Di Stefano 19 / 36

Final notes on BDDs

© Can be generalized to all of LTLa

Intuitively, fixed-point computation is guided by
the “shape” of the property

© Impressive advance in hardware domain:
“1020 States and Beyond” in 1990 (!)

§ BDDs also become cumbersome
§ Ordered BDDs mitigate this but:

1. Finding a good variable ordering is hard
2. Some functions always yield a BDD of

exponential size
§ Still finite-state!
aActually, “standard” algorithms are based on branching-time

logics that are a superset of LTL

2024-12-09 Software Verification, Di Stefano 20 / 36

Bounded model checking

States reachable within k steps:

Reachk = init(x(1))∧R(x(1),x(2))∧ . . .∧R(x(k−1),x(k))

where each x(1) is a vector of Boolean variables

To verify safety (Gp(x)):

1. Consider P = p(x(1))∧ . . .∧ p(x(k))

2. Solve Reachk ∧¬P. . . Using a SAT solver!
SAT Counterexample found (a reachable

state where ¬p), system is unsafe
UNSAT Bounded system is safe, cannot say

anything about the whole system
(underapproximation)

2024-12-09 Software Verification, Di Stefano 21 / 36

From C to SAT: Basics2

x=x+y;
if(x!=1)

x=2;
else

x++;
assert(x<=3);

→

x1=x0+y0;
if(x1 != 1)

x2=2;
else

x3=x1+1;
x4=(x1!=1)?x2:x3;
assert(x4 <=3);

→

C := x1 = x0 + y0∧ x2 = 2∧
x3 = x1 + 1∧
(x1 ̸= 1)⇒ x4 = x2∧
¬(x1 ̸= 1)⇒ x4 = x3

P := x4 ≤ 3

1. C code (+ assertions)
2. Static single assignment (SSA) pass
3. SAT formula (C∧¬P)

(Encode +,-,*. . . as Boolean circuits)

2Adapted from Clarke et al. 2004

2024-12-09 Software Verification, Di Stefano 22 / 36

From C to SAT: Reduction

• Function calls are inlined
• Loops are unwound: apply k times

while(e) {P}⇒ if(e) {P}; while(e) {P}

(ignore last while)
• Similar approach for recursive function calls &

backwards gotos
• During unwinding, pointer dereferences (&p) are

substituted with their variables

int a, b, *p;
if(x) p=&a; else p=&b;
*p=1;

→
int a, b, *p;
if(x) p=&a; else p=&b;
if(x) a=1; else b=1;

2024-12-09 Software Verification, Di Stefano 23 / 36

Pros and cons of BMC (so far)

© Rapid progress in SAT ⇒ Very efficient
© Can scale to the complexity of real software
© Minimal, precise counterexamples
§ Bounded analysis
§ Tailored for safety checking

(All of LTL may be reduced to safety-checking an
appropriate automaton, but this has a cost)

§ Still finite state

2024-12-09 Software Verification, Di Stefano 24 / 36

Why infinite-state matters

. . . Aren’t all computers finite-state? Yes, but
unbounded things are not uncommon in software

• “bignum” types, strings, recursive structs. . .
• Dynamic memory management (malloc, free)
• Process/thread creation and destruction (fork,
pthread_create)

Treating these unknowns as ranging over ∞ domains
might be more elegant and potentially more efficient

However, need formal tools able to handle these
domains

2024-12-09 Software Verification, Di Stefano 25 / 36

SMT-based BMC

SMT = Satisfiability Modulo Theories

• Solver is not limited to Booleans
• Can reason about variables of certain types for

which a suitable theory exists (= formal description
of operators on these variables)

• Example: LIA = theory of integers with linear
arithmetic (+, −, but no multiplication)

© We can implement BMC tools that encode ints as
integers, floats as reals. . . and then use an SMT
solver ⇒ Verification over infinite state spaces

§ Many interesting theories are undecidable

2024-12-09 Software Verification, Di Stefano 26 / 36

Predicate abstraction

Another way to handle large/infinite state spaces

• Define a set of predicates p1, . . .pn over x
• These induce (at most) 2n abstract states s♯

i
,

i.e., from (¬p1, . . . ,¬pn) to (p1, . . . ,pn)

• We add a transition s♯
i
→ s♯

j
whenever a concrete

state s ∈ s♯
i

can transition into s′ ∈ s♯
j

• Similarly abstract init and φ

• Use a procedure for finite-state MC

© Sound (it is an abstract interpretation after all!)
§ Overapproximation. What if the MC step FAILs?

2024-12-09 Software Verification, Di Stefano 27 / 36

CEGAR

(Counterexample-Guided Abstraction Refinement)

1. Build initial abstraction M♯0, φ♯0

2. Check if abstract system M♯0 satisfies φ♯0

3. If SAFE, exit (SAFE).
4. If FAIL with counterexample π♯0:

If it can be concretised, exit (FAIL).
Otherwise (spurious):
a. Find at what step π♯0 becomes spurious
b. Extract new predicates with this information
c. Compute a new abstractions M♯1, φ♯1

d. Go back to square 2.

© Fully automated (we can extract pr. from M, φ)
§ Sensitive to which predicates are used
§ Some properties may need ∞ refinements

2024-12-09 Software Verification, Di Stefano 28 / 36

Applications to CAS

(Collective Adaptive Systems)

Collections of concurrent agents that interact with
each other and adapt to changes

1. Collective behaviour emerges from local choices
2. Their evolution is hard to predict and reason about
3. Most modelling tools only focus on simulation
4. Can tools from SW verification help?

2024-12-09 Software Verification, Di Stefano 29 / 36

Our approach

• Describe system in a high-level DSL
• Attribute-based interaction: agents observe and

react to other agents’ exposed variables
• Structural encoding of the system as a C program
• Sequentialization: concurrent system → sequential

program (+ additional nondeterminism)

2024-12-09 Software Verification, Di Stefano 30 / 36

Takeaways

• Relatively low-effort
• Not limited to our language
• Can benefit from progress in SW verification
• Also suitable for simulation

- Use a dummy assertion that fails after k steps
- Give program to a SAT-based BMC
- Randomize the behaviour of the SAT solver to get

different traces

Flocking behaviour after
disruption by a bird of prey

Ant colony determining the
shortest path to a food source

2024-12-09 Software Verification, Di Stefano 31 / 36

https://zenodo.org/records/14066094
https://doi.org/10.5281/zenodo.14066150

(Some) Resources

Model checkers for C
CBMC https://github.com/diffclue/cbmc
CPAchecker https://cpachecker.sosy-lab.org/
ESBMC https://github.com/esbmc/esbmc
UAutomizer https://ultimate-pa.org/automizer

SAT/SMT solvers
KissSAT https://github.com/arminbiere/kissat/
Z3 https://github.com/Z3Prover/z3
MathSAT https://mathsat.fbk.eu/
CVC5 https://cvc5.github.io/

Competitions
SV-COMP https://sv-comp.sosy-lab.org/
SAT https://satcompetition.github.io/
SMT-COMP https://smt-comp.github.io/2024/

2024-12-09 Software Verification, Di Stefano 32 / 36

https://github.com/diffclue/cbmc
https://cpachecker.sosy-lab.org/
https://github.com/esbmc/esbmc
https://ultimate-pa.org/automizer
https://github.com/arminbiere/kissat/
https://github.com/Z3Prover/z3
https://mathsat.fbk.eu/
https://cvc5.github.io/
https://sv-comp.sosy-lab.org/
https://satcompetition.github.io/
https://smt-comp.github.io/2024/

Conclusions

• Long history of MC success in the HW domain
• Increasingly able to tackle real-world SW

MS Windows Driver Foundation (early 2000s)
NASA Mars rovers (2004)
Boot code in AWS data centres (2018)

• Advantages from mixing multiple formal methods
• We can use SW MCs as backends (I know I do ©)
• Every § is a topic of active research

2024-12-09 Software Verification, Di Stefano 33 / 36

References I

Christel Baier and Joost-Pieter Katoen. Principles of Model
Checking. MIT Press, 2008.

Dirk Beyer and Andreas Podelski. “Software Model Checking: 20
Years and Beyond”. In: Principles of Systems Design. 2022. DOI:
10.1007/978-3-031-22337-2_27.

Armin Biere et al. “Symbolic Model Checking without BDDs”. In:
TACAS. 1999. DOI: 10.1007/3-540-49059-0_14.

Guillaume P. Brat et al. “Experimental Evaluation of Verification
and Validation Tools on Martian Rover Software”. In: Formal
Methods Syst. Design 25.2-3 (2004), pp. 167–198. DOI:
10.1023/B:FORM.0000040027.28662.a4.

Jerry R. Burch et al. “Symbolic Model Checking: 1020 States and
Beyond”. In: LICS. 1990. DOI: 10.1109/LICS.1990.113767.

Edmund Clarke, Daniel Kroening, and Flavio Lerda. “A Tool for
Checking ANSI-C Programs”. In: TACAS. 2004. DOI:
10.1007/978-3-540-24730-2_15.

Edmund M. Clarke. “The Birth of Model Checking”. In: 25 Years
of Model Checking. 2008. DOI: 10.1007/978-3-540-69850-0_1.

2024-12-09 Software Verification, Di Stefano 34 / 36

https://doi.org/10.1007/978-3-031-22337-2_27
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1023/B:FORM.0000040027.28662.a4
https://doi.org/10.1109/LICS.1990.113767
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-69850-0_1

References II

Edmund M. Clarke, Daniel Kroening, and Karen Yorav.
“Behavioral Consistency of C and Verilog Programs Using
Bounded Model Checking”. In: DAC. 2003. DOI:
10.1145/775832.775928.

Edmund M. Clarke et al. “Counterexample-Guided Abstraction
Refinement for Symbolic Model Checking”. In: J. ACM 5 (2003).
DOI: 10.1145/876638.876643.

Edmund M. Clarke et al., eds. Handbook of Model Checking.
2018. DOI: 10.1007/978-3-319-10575-8.

Rocco De Nicola et al. “Modelling Flocks of Birds and Colonies of
Ants from the Bottom Up”. In: STTT 25 (2023). DOI:
10.1007/s10009-023-00731-0.

Luca Di Stefano, Rocco De Nicola, and Omar Inverso.
“Verification of Distributed Systems via Sequential Emulation”.
In: TOSEM 3 (2022). DOI: 10.1145/3490387.

Susanne Graf and Bernhard Steffen. “Compositional
Minimization of Finite State Systems”. In: CAV. 1990. DOI:
10.1007/BFb0023732.

2024-12-09 Software Verification, Di Stefano 35 / 36

https://doi.org/10.1145/775832.775928
https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/s10009-023-00731-0
https://doi.org/10.1145/3490387
https://doi.org/10.1007/BFb0023732

References III

Ranjit Jhala and Rupak Majumdar. “Software Model Checking”.
In: ACM Comput. Surveys 41.4 (2009), 21:1–21:54. DOI:
10.1145/1592434.1592438.

Viktor Schuppan and Armin Biere. “Efficient Reduction of Finite
State Model Checking to Reachability Analysis”. In: 5 (2004).
DOI: 10.1007/s10009-003-0121-x.

Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. “Checking
Safety Properties Using Induction and a SAT-Solver”. In: FMCAD.
2000. DOI: 10.1007/3-540-40922-X_8.

2024-12-09 Software Verification, Di Stefano 36 / 36

https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1007/s10009-003-0121-x
https://doi.org/10.1007/3-540-40922-X_8

	References

