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Stigmergic collective systems
Agents have a limited view of the system
Stigmergy: indirect interaction through a shared medium
Collective behaviour emerges from stigmergy, feedback
Can we obtain guarantees about such emergent features?
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The LAbS language

LAbS is a language to describe stigmergic collective systems1

The shared medium (virtual stigmergy) is a distributed
key‐value store

Each agent has its own replica (local stigmergy)

Each key (stigmergic variable) in the local stigmergy is mapped
to either a value with a timestamp, or the undefined value⊥

1De Nicola, Di Stefano, Inverso,Multi‐agent systems with virtual stigmergy, Sci. Comput. Program. 187, 2020.
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Stigmergic assignments and messages
An agent may assign the result of expression e to variable x

A timestamp t is taken from a global clock
In the local stigmergy, x is set to the result of e (with t)
After the assignment, the agent propagates the new value
and timestamp (put‐message)

Whenever an agent evaluates an expression:

It uses local values to evaluate stigmergy variables
For every such variable x, it asks for confirmation about
the value of x (qry‐message)

All messages are sent asynchronously
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Receiving and reacting to messages
When an agent receives a put‐message about variable x:

If the received timestamp is lower than the local one,
nothing happens;
Otherwise, the receiver updates its value and timestamp
for x with those in the message, and asynchronously
sends a put‐message about x as well.

When an agent receives a qry‐message about x:

If the received timestamp is lower than the local one, the
receiver will asynchronously send a put‐message about x;
Otherwise, same as for put‐messages: update x with
received value and send a put‐message
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LAbS: interaction constraints

For each variable x, the user may define a link predicate θx(a, b)
Agent amay send a message about x to b iff. θx(a, b) holds
Examples

Broadcast: θx(a, b) is always satisfied
Ranged broadcast: θx(a, b) iff. a, b are close enough
Group‐based communication: θx(a, b) iff. a is in the same
group as b
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LAbS leader election

Stigmergic variable leader storing the leader’s id

Each agent follows this behavior:

B ≜ leader > id → leader ↜ id; B

Eventually, agents elect the agent with lowest id
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LAbS needs formal verification

Plenty of nondeterminism:

Agents’ individual behaviour may contain nondet. choices
(like P + Q in CCS)
User may define a set of potential initial states
Agents may be fully interleaved
Asynchronous messaging
Dynamic communication partners

Even simple systems feature vast state spaces
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ATLAS (A Temporal Logic for Agents with State)
Quantified predicates

Each agent in LAbS has a type

A quantified predicate ψ describes a state by quantified
variables that range over agents of a given type

Example: Consensus among voters (or lack thereof)
“All Voter agents have the same leader”

∀x ∈ Voter • ∀y ∈ Voter • x.leader = y.leader

“There is at least one agent with different leader from
everyone else”

∃x ∈ Voter • ∀y ∈ Voter • x = y ∨ x.leader ≠ y.leader
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ATLAS (A Temporal Logic for Agents with State)
Temporal modalities

If ψ is a quantified predicate, we obtain an ATLAS temporal
property by attaching a temporal modality to it

alwaysψ All reachable states satisfy ψ
fairlyψ All fair executions reach a state where ψ holds

(We ignore unfair loops: if there is a way, the
execution will eventually break out of any loop)

fairly∞ ψ All fair executions contain∞ states where ψ holds
(Equivalent to “All reachable states satisfy
fairlyψ”)
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CADP
https://cadp.inria.fr

Toolbox to design and analyse formally‐specified
concurrent systems. We mainly use the Evaluator
on‐the‐fly model checker with these languages:

LNT Specification language influenced by process algebras and
general‐purpose programming languages (both functional
and imperative), with LTS‐based semantics;2

MCL Value‐passing temporal logic based on the
alternation‐free modal µ‐calculus.3

2Garavel, Lang, and Serwe, From LOTOS to LNT, ModelEd, TestEd, TrustEd, 2017.
3Mateescu and Thivolle, A Model Checking Language for Concurrent Value‐Passing Systems, FM, 2008.
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MCL in a nutshell
MCL is based on action patterns α: { GATE offer(s) }
matching transition labels in the LTS

Each offer is either an expression !expr, or a pattern
?var:Type. These allow to bind values to variables and
reference them later

MCL has PDL‐stylemodalities [ρ]ϕ, ⟨ρ⟩ϕ, etc. where ρ is a
regular formula composed of action patterns

Examples of ρ: α; ρ.ρ (sequence); α∗ (Kleene star)

Fixed point operators (nu, mu) allow to characterize infinite (or
finite but arbitrarily large) sub‐LTSs, and can be parameterised
in one or more variables
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Verification workflow

Implemented as part of the SLiVER verification tool4

LAbS
Multi-agent
system (S)

Temporal
property (φ)

SLiVER frontend
Evaluator

P |= phi.mcl?

PASS
or

(FAIL + cex)

MCL translator

LNT emulation
program (P)

MCL query
(phi.mcl)

Agent
types (T)

4https://github.com/labs‐lang/sliver
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Translating predicates into MCL

Simple quantifier elimination + encoding into an MCLmacro

Example
∀x ∈ T • x.var > 0

Assuming that there are n agents a1, . . . , an of type T:
macro Predicate(a1_var, a2_var, . . ., an_var) =

(a1_var > 0) and (a2_var > 0) and
. . . and (an_var > 0)

end_macro

ψ may involve n agents andm variables for each agent⇒
Predicate has nm parameters
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Encoding alwaysψ in MCL
(* Capture initial value of all relevant variables *)
[{assign !1 !"v1" ?x11:Int} . … .

{assign !n !"vm" ?xnm:Int}]
nu Inv (x11:Int=x11, …, xnm:Int=xnm) . (

Predicate(x11, . . . , xnm) and
[not {assign …} or {assign to other variables}]
Inv (x11, . . . , xnm) and
[{assign !1 !"v1" ?w:Int}]
Inv (w, x12, . . . , xnm)
and … and
[{assign !n !"vm" ?w:Int}]
Inv (x11, x12, . . . ,w) )

where {assign i x v} denotes that agent i sets variable x to v
(either by assignment or after receiving a message)

Verifying stigmergic systems using CADP 15/20



Encoding fairly∞ ψ in MCL
First, we encode fair reachability of Predicate as a macro:
macro Reach (v11, . . . , vnm) =

mu R(x11:Int=v11, …, xnm:Int=vnm) . (
Predicate(x11, . . . , xnm) or
<not {assign …} or {assign to other variables}>
R(x11, . . . , xnm) or
<{assign !1 !"v1" ?w:Int}> R(w, . . . , xnm)
or … or
<{assign !n !"vm" ?w:Int}> R(x11, . . . ,w) )

end_macro

Then, we check that Reach is an invariant (as in the previous
slide, but with Reach instead of Predicate)

Encoding fairlyψ is almost the same, but we “quit” as soon
as Predicate holds
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Experiments
System kStates kTransitions Property Time (s) Memory (MiB)

formation-rr 8786 160984 safety 1931 1683
distance 2147 2015

flock-rr 58032 121581 consensus 3772 13792
flock 60122 223508 consensus 4375 13778
leader5 42 1631 consensus0 11 42
leader6 422 27874 consensus0 240 219
leader7 4439 497568 consensus0 3963 3164
twophase2 19 1125 infcommits 17 53
twophase3 291 22689 infcommits 849 142

-rr = round‐robin agent scheduling
All properties are fairly∞ except safety (always)

Improvements: with a previous encoding,5 formation-rr and
flock-rr would go out of memory at 32GiB

Adding 1 agent = 10x increase in LTS size (leader, twophase)
5Di Stefano, Lang, and Serwe, “Combining SLiVER with CADP to Analyze Multi‐agent Systems,” in COORDINATION, 2020.
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Parallel emulation programs
Previous experiments refer to sequential programs, i.e.,
concurrent agents are emulated by a scheduler which
repeatedly:

Selects an agent and makes it perform the next action of
its behaviour
Passes a stigmergic message (if any) from its sender to all
potential receivers, or

A parallel emulation program has an LNT process for each
agent, plus some helper processes, composed using LNT’s
parallel composition operator par

Can be verified with compositional techniques
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Parallel emulation programs
Preliminary experiments

Encode flock-rr as a parallel LNT program
Generate LTS compositionally (divbranching reduction)
Verify a fairly∞ property (same as sequential
experiment)

Process States Transitions Time (s) Memory (kiB)
Timestamps 13 234 3 34360
Scheduler 6 12 2 34212
Agent1 25637 1989572 537 3102904
Agent2 25637 1989572 537 3102908
Agent3 25637 1989572 538 3100408
Main 28800 74906 73 70828
Property check – – 2 43428
Time, max memory 1692 3102908
(Sequential) 3772 14122756
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Conclusions
Stigmergic systems involve large state spaces
We canmodel‐check some temporal properties about
them by relying on CADP
Fully mechanised approach: knowledge of CADP not
required
Compositional verification appears to be promising

Future work
Extend ATLAS
▶ Modalities (e.g., ψ Until ψ?)
▶ Quantifiers (e.g., counting agents?)

Further investigate compositional approach
Experiment with distributed LTS generation
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Backup slides



Local stigmergy: reading and writing
Agent imay perform stigmergic assignments x ↜ e

Semantics:

Get a value v by evaluating expression e
Get a timestamp t from a global clock
Update local stigmergy Li so that Li(x) = ⟨v, t⟩
Add x to a set Zpi of pending put‐messages

For every stigmergic variable y referenced in e:

Retrieve Li(y) = ⟨w, _⟩ and use w to evaluate e
Add y to a set Zqi of pending qry‐messages
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Stigmergic messages

If x ∈ Zpi or Zqi, and Li(x) = ⟨v, t⟩, agent imay send a message

⟨put, x, v, t⟩ “At time t, someone set x to v”⟨qry, x, v, t⟩ “My value for x is ⟨v, t⟩, is it up‐to‐date?”
When an agent i receives a message ⟨(put or qry), x, v, t⟩:

Retrieve Li(x) = ⟨v′, t′⟩
If Li(x) = ⊥, or if t > t′, then update Li so that
Li(x) = ⟨v, t⟩, and add x to Zpi
If it is a qry‐message and t < t′, add x to Zpi
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Communication constraints

Agents send messages in an attribute‐basedmulticast fashion:

Each variable x has a predicate θx(i, j) over the state of
two agents
i =message sender, j = (potential) receiver
Agents i, jmay exchange a message ⟨_, x, _, _⟩ iff. θx(i, j)
holds
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LNT translation: “symbolic” timestamps

Previously, we represented timestamps as Nats taken from a
global clock. But:

The global clock must reset at some point (e.g., after
reaching 255) = likely weird behavior after the reset
Big state space

Observation:

We never need the actual value of a timestamp, just its relation
with others (> < =)

Thus, we track only that relation, by using a 3‐valued matrix for
each stigmergy variable
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Representing timestamps symbolically
For each stigmergic variable x we define a n × nmatrixMx
(n = # of agents) with this invariant:

Mx[i, j] = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if i’s timestamp for x is greater than j’s
−1 if i’s timestamp for x is lower than j’s
0 otherwise (same timestamp)

We can maintainMx in our LNT program without tracking
the underlying timestamps
Furthermore, we can store all ofMx in a 1D array of length
n(n − 1)/2
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ATLAS syntax

e ∶∶= κ ∣ x.var ∣ e ◦ e ∣ ∣e∣ (value expression)
p ∶∶= e ⋈ e ∣ x = x ∣ ¬p ∣ p ∧ p (predicate)
ψ ∶∶= p ∣ ∃x ∈ T • ψ ∣ ∀x ∈ T • ψ (quantified predicate)
ϕ ∶∶= alwaysψ ∣ fairlyψ ∣ fairly∞ ψ (temporal property)

where ◦ ∈ {+,−,×, . . .} and ⋈∈ {=,<,>, . . .}
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From state‐based to action‐based logics

ATLAS predicates on the state of agents
MCL is action‐based (predicates on transition labels)

Whenever agent id sets a variable x to a value v, we emit a
transition with label

{assign !id !"x" !v}
We will use these transitions to track the state of the system
via appropriate MCL queries
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Encoding fairlyψ in MCL

Like fairly∞ ψ: however, we “break out” of the invariance
check as soon as Predicate is satisfied
[{assign !1 !"v1" ?x11:Int} . … .

{assign !n !"vm" ?xnm:Int}]
nu F (x11:Int=x11, …, xnm:Int=xnm) . (
Predicate(x11, . . . , xnm) or (

Reach(x11, . . . , xnm) and
[not {assign …} or {assign to other variables}]

F(x11, . . . , xnm) and
[{assign !1 !"v1" ?w:Int}] F(w, x12, . . . , xnm)
and … and
[{assign !n !"vm" ?w:Int}] F(x11, x12, . . . ,w)))
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Parallel emulation programs
Structure

agent1 agent2

agent3

Timestamps

Scheduler

puti, reqi

refresh,
request

tick

puti, reqi Exchange a stigmergy message
request Ask whether my timestamp for a variable is

greater/equal/less than the one of another agent
refresh Set new timestamp for a given variable

tick Tells an agent to perform an action
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