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Sequential emulation is a semantics-based technique to automatically reduce property checking of distributed
systems to the analysis of sequential programs. An automated procedure takes as input a formal specification
of a distributed system, a property of interest and the structural operational semantics of the specification
language and generates a sequential program whose execution traces emulate the possible evolutions of the
considered system. The problem as to whether the property of interest holds for the system can then be
expressed either as a reachability or as a termination query on the program. This allows to immediately adapt
mature verification techniques developed for general-purpose languages to domain-specific languages, and to
effortlessly integrate new techniques as soon as they become available. We test our approach on a selection
of concurrent systems originated from different contexts from population protocols to models of flocking
behaviour. By combining a comprehensive range of program verification techniques, from traditional symbolic
execution to modern inductive-based methods such as property-directed reachability, we are able to draw
consistent and correct verification verdicts for the considered systems.
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1 INTRODUCTION

In some natural and artificial systems, the intricacies of concurrency manifest themselves in the
subtle relationship between the simple behaviour of the agents and the unexpected emerging
consequences of their mutual interference [Matari¢ 1993].

To experience this first-hand, one can observe long enough a colony of ants, or the evolutions of
a social network, or many other seemingly different systems such as markets, populations, robotic
swarms, as well as several classes of so-called complex or collective systems [Bonabeau et al. 1999;
Desai et al. 2017; Grimm et al. 2005; Haglich et al. 2010; Tesfatsion 2002; Vassev et al. 2012].

From a verification perspective, systems of this kind can be particularly difficult to deal with. At
a specification level, their specific characteristics may not be easily expressible through the usual
constructs of a general-purpose formalism. As for the analysis, one can expect remarkably large
state spaces caused by process interleaving and asynchrony.

Appropriate domain-specific languages, based on bottom-up paradigms such as agents [Milner
1975], actors [Hewitt et al. 1973], and process calculi [Fokkink 2000], and tailored analysis techniques,
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can tackle these limitations [Blondin et al. 2018; Lomuscio et al. 2017; Philippou et al. 2013; Sumpter
et al. 2001]. However, they do entail a non-negligible integration effort on a case-by-case basis.
Moreover, they make it difficult to catch up with the most recent advances in automated analysis
proposed for mainstream languages. This prevents opening up towards other disciplines where
there might be a great deal to be gained.

To reduce this distance, in this paper we present sequential emulation, a semantics-based reduction
from property checking of concurrent system specifications to the analysis of sequential imperative
programs. A two-step encoding procedure takes as input the formal specifications of the system
under consideration, the property of interest, and the operational semantics of the domain-specific
language in which the system is described. The formal specifications define the behaviour of the
different agents in the systems as separate processes. The structural operational semantics (SOS)
rules [Plotkin 1981] of the language describe the effect of the actions of the agents on themselves
and on the rest of the system, and the possible interactions.

The formal specifications are first translated into a compact representation of the possible flow of
actions of each agent and of the interleaving of the actions of the different agents. A symbolic control
mechanism based on predicates avoids explicitly representing the interleaving of the actions and
thus enables it to retain the compactness of the initial specifications. The representation resulting
from the first translation is then combined with the SOS rules of the specification language to
generate a simple sequential program where separate functions model the actions of the agents
and the possible system-level transitions; a scheduler repeatedly invokes such emulation functions,
non-deterministically, to model the additional interleaving of the actions of the agents with the
system-level transitions. Compactness is still retained as the program size is linear in the overall
number of elementary actions used in the specifications. By construction, the execution traces of the
sequential program emulate the possible evolutions of the distributed system under consideration.
Therefore, depending on the property of interest, the program can be instrumented either for
reachability or termination analysis, thus reducing formal verification of the initial system to a
common verification query on a sequential program.

Our approach can in principle be adapted by mapping from any domain-specific language
equipped with an SOS semantics to any imperative language with arrays and loops. The adap-
tation only requires a one-time manual effort by the user, who has to provide templates for the
emulation functions in the target language. All available verification techniques which target this
imperative language and support standard instrumentation constructs for automated analysis (i.e.,
non-deterministic initialisation, assertions, assumptions) can then simply be used as a black box.
As an immediate advantage, we leverage a comprehensive range of readily available techniques
for the analysis of sequential programs. Furthermore, we can easily integrate new techniques as
soon as they become available. At the same time, the end-user is still at ease, as familiarity with the
source language is the only usage requirement.

To evaluate our technique, we consider a selection of distributed systems, namely flocks [Reynolds
1987], population protocols [Aspnes and Ruppert 2009], and pattern-forming agents [Suzuki and
Yamashita 1999]. As they originate from different contexts, these systems are normally studied
separately and with rather different techniques. In contrast, we express their specifications into
the same formal specification language [De Nicola et al. 2020a]. We then use our approach to
automatically translate the specifications into sequential C programs, thus immediately inheriting a
comprehensive range of mature verification techniques, including symbolic execution [King 1976],
bounded model checking [Biere et al. 1999], value- and predicate-based abstraction [Beyer et al.
2007], k-induction [Sheeran et al. 2000], inductive strengthening [Bradley 2011; Eén et al. 2011;
Komuravelli et al. 2014], and interprocedural analysis [Reps et al. 1995]. We can thus make different
attempts to analyse each system using every technique.

ACM Trans. Softw. Eng. Methodol., Vol. xx, No. yy, Article zz. Publication date: December 2021.



Verification of Distributed Systems via Sequential Emulation 7z:3

For all the considered systems, at least one of the used tools does generate a conclusive verification
verdict, and the verdicts are always consistent. Therefore, we can confidently draw safe conclusions
for every system. We also manage to successfully verify a particularly complex model of flocking
behaviour [Reynolds 1987] for which, to the best of our knowledge, the only known attempts at
formal analysis are limited to simulation and under-approximation. Finally, to illustrate another
potential application of our procedure, we briefly consider the domain of service choreographies,
and show that we can use sequential emulation to check that a choreography implementation is
deadlock-free.

To summarise, our contributions are:

(1) a technique for translating from a given formal language for concurrent systems to a given

sequential language for imperative programs;

(2) a prototype implementation of our encoding from a domain-specific language to the C

language;

(3) an experimental evaluation on a variety of systems originated from different contexts using

a representative set of state-of-the-art verification tools for sequential C programs;

(4) a preliminary demonstration of the applicability of our encoding in the domain of service

choreographies.

The rest of the paper is structured as follows. Section 2 introduces some preliminary concepts,
as well as the domain-specific language used to illustrate our procedure. Section 3 presents our
technique. Section 4 describes the prototype implementation for the aforementioned language, and
the experimental results. Section 5 introduces the concept of service choreographies and shows
how we can check deadlock freedom of choreography implementation by applying our technique.
Finally, Sections 6 and 7 discuss related work and report some concluding remarks.

2 BACKGROUND

In this section, to make the paper self contained, we introduce some basic definitions and concepts
that will be used throughout the paper. First, we will introduce the basic notions of process
algebras [De Nicola 2011] and define labelled transition systems (definition 2.1), provide an overview
of Milner’s Calculus of Communicating Systems (definition 2.2) and introduce synchronisation
algebras (definition 2.3) that are useful to model systems behaviours. After this, we will provide a
minimal description of the Linear Temporal Logic formalism (definition 2.5) that is instead useful
to model system properties. Finally, we briefly describe a domain-specific language for multi-agent
systems, which we will use to demonstrate the applicability of our approach.

2.1 Process Algebras

An important component of our approach is operational semantics, which is used to model a program
as a labelled transition system (LTS) that consists of a set of states, a set of transition labels, and a
transition relation. The states of the transition system are just terms of a language, while the labels
of the transitions between states represent the actions or the interactions that are possible from a
given state and the state that is reached after the action is performed.

Definition 2.1 (Labelled Transition Systems). A labelled transition system (LTS) is a triple (S, A, —),
with S representing a set of states, L a set of labels, and — C S X L X S a labelled transition relation.

Each element of — is called a transition and is commonly written as s Z s’, indicating that the
LTS may evolve from some state s to a state s’ by performing an action with label a.

To provide examples of the actual transformations induced by our approach we will use specifi-
cations written in CCS, the Calculus of Communicating Systems [Milner 1980, 1989] introduced
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Table 1. Structural operational semantics of CCS. The rules symmetrical to (cHoice) and (PAR7) have been
omitted for brevity.
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by Robin Milner around 1980. Its labels model actions and binary communications, while the set
of operators includes primitives for describing parallel composition, choice between actions, and
scope restriction. Its operational semantics associates an LTS to each CCS term.

Definition 2.2 (Calculus of Communicating Systems). Let A = {a, b, ...} a fixed set of names, and
A = {x | x € A} a set of co-names. Let 7 be a distinguished invisible action. Then, A = A U A is
the set of visible actions, A; = AU 7 is the set of generic actions, and a CCS process is any term P
generated from the following grammar:

P,Q:=o|p.P|P+Q|P|Q)P\®|P[f](K

where y € AU {7}, © is a subset of A, and f is a total function f : A; — A, which preserves

name/co-name relations (i.e., f(a) = f(a) for any action a) and does not renames the invisible
action (i.e., f(r) = 7).

The formal structural operational semantics (SOS) of CCS operators is inductively specified
through a set of derivation rules: for each operator there are some rules describing the behaviour
of a system in terms of the behaviours of its components. As a result, each process term is seen as a
component that can interact with other components or with the external environment. The actual
rules are reported in Table 1 and enable us to associate to each CCS term an LTS whose transition
relation is the least relation that satisfies those rules.

Intuitively, 0 is the idle process, which cannot perform any action; y.P can perform action y and
continue as P (rule AcT); P + Q can behave as either P or Q (rule cHOICE); P | Q alternates the
executions of both P and Q (rule PAR;). Furthermore, P and Q can evolve together when they are
willing to perform two complementary actions p, u (rule PAR). A restricted process P \ © has the
same behaviour as P, but may only perform those actions that do not belong to © (rule res). The
relabelling operator P[ f] renames the actions performed by P according to the relabelling function
f (rule REL). Lastly, we assume that there exists a set of constants K = P, and that a CCS term
may contain references to these constants (rule con). This allows the grammar to describe infinite
behaviours by means of recursive terms: for instance, a term K = a.b.K repeatedly performs an
action a followed by b.

To conclude our overview of CCS, we use it to specify a simplified version of a two-phase commit
scenario [Gray 1978] that will be used later in our examples.
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Example 2.1 (Two-phase commit). A two-phase commit (2PC) protocol involves a number of
workers, which must collectively decide whether to commit or rollback a transaction by interacting
through a coordinator. In the first phase, the coordinator asks the workers to cast a vote. Each worker
may either agree or disagree on committing the transaction. In the second phase, if all workers
have agreed, the coordinator tells them to commit the transaction; otherwise, the coordinator sends
them a rollback request. In any case, the workers send an acknowledgement message back to the
coordinator and finalise the transaction.

A system composed of one coordinator and one worker may be described as the parallel compo-
sition of two CCS processes:

CooRD = vote. (agree.commit.commit.ok.o + disagree.rollback.rollback.nok.o)

WORKER = vote.agree. (commit.commit.WORKER + rollback.rollback.WORKER)

2PCccs
2PClg

CoORD | WORKER

2PCccs \ {agree, commit, disagree, rollback, vote}

11>

Please consider the way the coordinator performs an action ok or nok to indicate whether the
transaction was finalized or rolled back. Since the WORKER process describes a worker that always
agrees to commit the transaction, we would expect the nok action to be unreachable. However,
2PCccs does not satisfy this expectation. As the two processes are not forced to synchronise, they
might simply perform their actions independently from each other, allowing nok to be performed.
Thus, one needs to introduce a restriction operator (process 2PC/. ) so that WorkER and COORD

ccs
are forced to synchronise on all actions except ok and nok. This makes the nok action unreachable.

The binary communication through complementary actions used in CCS is just one of the possible
interaction strategies used in the literature to model interaction between components. Indeed,
we might have synchronisation among similar actions rather than complementary ones, but also
one-to-many or many-to-many communications instead of one-to-one. So-called synchronisation
algebras [Winskel 1984] have been introduced to provide a parametric definition which can be
instantiated to capture many of the synchronisation and communication strategies presented in
the literature.

Definition 2.3 (Synchronisation algebras). Let A be the set of actions that a process may perform.
A synchronisation algebra is a symmetric! partial function o : A x AU {*} < A, where * is
a distinguished symbol representing idleness. The behaviour of the parallel composition of two
processes P, Q according to a synchronisation algebra o, which we denote as P |, Q, is formalised
by the following semantic rules. Note that the rule symmetrical to IDLE has been omitted for brevity.

PL P o(uw) L PLP 050 o(up)#L
e (IDLE) ) (sync)
O ’ OULH ’ /
PlUQ—’P|GQ P|UQ—>P|UQ

Rule IDLE says that, if P is willing to become P’ by performing an action p and o(y, *) is an action,
then the parallel composition may perform o(y, *) and become P’ |, Q. Rule syNc states that the
two processes may synchronise when they are willing to perform actions p and ', respectively,
and o(y, ¢’) is an action.

LA function is symmetric if its value is the same for all permutations of its arguments.
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Table 2. SOS of Hoare’s parallel composition operator. The symmetric rule of (IDLE, ) is omitted.

PSP a¢lL PSP 050 acl
- (IDLE,) 7
PI[LIIQ— P |[L]I Q PI[L]|Q— P"|[L]| Q

(syncy)

By relying on a specific synchronisation schema we can easily model the parallel composition of
CCS. It would be captured by an algebra where

(1) o(a,b) =7iff b =a, L otherwise;

(2) o(a,*) = a.

This expresses that (1) two agents may synchronise only by performing two complementary actions,
and (2) a single agent may interleave its actions with those of others running in parallel at any
time.

As another example, let us consider Hoare’s parallel composition operator, which is featured in
the CSP process algebra [Hoare 1985] and allows for multi-party synchronisation between parallel
processes. This operator is denoted by P |[L]| Q, where L is a set of actions. Its behaviour is
formalised by the semantic rules in Table 2. Intuitively, processes P and Q may interleave the
execution of all actions that are not in L (rule 1DLE, ), and they are forced to synchronise on those
in L (rule sync,). Whenever they do synchronise on an action a € L, the parallel composition
performs a transition with label a. This allows an external process to synchronise with the a action
again. For instance, a process a |[{a}]| a |[{a}]| a may perform a single a-transition and terminate.
The actual synchronisation algebra oy, for Hoare’s parallel composition - |[L]] - is the following:

(1) or(a,a) = aifa € L, L otherwise;

(2) or(a,*) =aifa ¢ L, L otherwise.

2.2 Linear Temporal Logic

The properties of the systems we will specify are expressed as formulae of a classical temporal
logic, namely LTL [Pnueli 1977], that are typically interpreted over a variant of labelled transition
systems that associate labels to states rather than transitions. Such labels indicate the set of atomic
propositions, i.e., elementary facts about the system, that hold in each state. In this subsection, we
introduce such a variant and then use it as a model for LTL formulae.

Definition 2.4 (Kripke structures). Let AP be a set of atomic propositions. Then, a Kripke structure
isatuple (S,I, R, L) where S is a finite set of states, I C S a set of initial states, R C S X S a transition
relation, and L : S — P (AP) a labelling function.

Given two states s, s’, we say that s’ is a successor of s if sRs’. This means that the system can
evolve from state s to s’ in one instant. Thus, the transition relation captures the temporal relations
between states; it is generally assumed that every state has at least one successor. Given a state sy,
a path rooted in sy is a sequence of states 7 = (so, 51, . . .) such that s;Rs;,1 for every i. Each path «
has an associated trace ¢ = (L(sg), L(s1),...), obtained as the sequence of labels associated to each
state in 7.

Definition 2.5 (Linear Temporal Logic). Let AP be a finite set of atomic propositions. Then, an LTL
formula is any term generated according to the following grammar:

p=true| ¢ | dpAPplal OPp|dU¢ whereae AP.

The meaning of an LTL formula is formally defined by a satisfaction relation |=, shown in Table 3.
There, we denote by o; the i-th element, or step, of a trace o, and by o' the suffix of o that starts
from o;. We now informally describe this relation.
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Table 3. Formal semantics of LTL.

o [ true ckEa — a€oy
o E —¢ = ol ok Q¢ = o k¢
cE ¢ ANpy &= cl¢ando E ¢ cEdUP, = Ti>0.0"E ¢; and

Vio<j<i= o B¢

The true formula is always satisfied. Boolean connectives work as usual: —¢ is satisfied if ¢ is
not, while ¢; A ¢, is satisfied if both sub-formulas hold. Other connectives, such as disjunction
V, implication —, and so on, may be derived from negation and conjunction. Intuitively, a trace
satisfies a formula q if the proposition a holds in the first step of the trace; it satisfies O¢ (“next ¢”)
if ¢ holds from the second step onwards; lastly, it satisfies ¢; U ¢ (“¢; until @,”) if ¢, holds in the
i-th step of the trace (for some i) and ¢; holds in all steps before that. We are chiefly interested
in two additional modalities, namely ¢¢ (“eventually ¢”) and O¢ (“always ¢”). A trace satisfies
the former if some step satisfies @, and the latter if all steps satisfy ¢. These modalities are not
usually included in the core grammar of LTL because they can be expressed as true U ¢ and —¢—¢,
respectively. A system satisfies an LTL formula if all its traces satisfy it.

Example 2.2 (LTL properties for 2PCccs). Let us now describe some properties of interest for the
2PC system of Example 2.1, and show how they can be expressed in LTL. For these properties, we
use an atomic proposition a for each action, with the simple interpretation that proposition a holds
in a given state if that state may perform an a-transition.

An invariant of interest could be “the action nok may never be performed”. This property is
simply encoded as O-nok. Similarly, the property “there is never an ok before an agree” would be
rendered as —ok U agree. Lastly, we could render the property “If there is an agree, then there will
eventually be an ok” as O(agree — ¢0k).

2.3 LADS, a Domain-specific Language for Stigmergic Interaction

As one of our case studies, we adopt an existing formal specification language for multi-agent
systems [De Nicola et al. 2020a]. We chose this language as it can express a representative selection
of systems, such as flocks [Reynolds 1987], population protocols [Aspnes and Ruppert 2009], and
pattern-forming agents [Suzuki and Yamashita 1999].

A central concept in the considered specification language, LADS, is stigmergic interaction,
which is particularly appropriate to the context of collective systems that may exhibit emerging
behaviour [Heylighen 2016; Pinciroli et al. 2015; Theraulaz and Bonabeau 1999]. Intuitively, a
stigmergy is an interaction mechanism based on signs that agents leave during their activity,
and that influence the behaviour of the others. This is recurringly observed in nature, e.g., in ant
colonies [Parunak 1997]. Agents in LAbS do not directly communicate with each other: rather,
they manipulate stigmergic variables which mimic such mechanism. Agents may also interact
through an environment, which is a set of shared variables. The behaviour (or process) of an agent
is a composition of basic actions, which are assignments to local, stigmergic, or shared variables.
Composite behaviours are obtained via classical process-algebraic operators, namely sequential
composition (P; Q), nondeterministic choice (P + Q), and interleaving (P | Q). Moreover, a process
may be guarded by a predicate over the state of the agent (9 — P).

Rather than providing a full description of the language, here we only describe the stigmergic
interaction mechanism and basic assignments to either the stigmergy or the environment, to show
how our encoding can cope well with more complex semantics.
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Table 4. SOS rules for stigmergic interaction in LAbS.

xeZp L(x)=(ov,t)

T (PROPAGATE)
(LLP,Zc,Zpy ———5(I,L,P, Zc, Zp\ {x})

put(I’,L ,x,0,t)
P s IULLEY: Lix)=@0.t") t'<t

(pUT)
ut(I’,L’ x,0,
S| (L LP, Zc, Zp) Lt—% S"|| (I, L[x (v, 1)], P, Zc\{x}, ZpU{x})
x€Zc L(x)=(v,t)
(CONFIRM)
qry(I,Lx,0,t)
(LL,P,Zc, Zp) —————— (I,L,P, Zc\{x}, Zp)
qry(I’,L' x,v,t)

S—— S I'L',LLLEY, time(L x)<t

(Qry1)

ry(I',L’ x,0,
SI(LL P, Ze, Zpy XL 6 (1 L (0, £)], P, Ze\ {x}, ZpU{x})

qry(I',L" x,v,t)
S—— S I''L',LLEY, time(L,x)>t

qry(I’,L x,0. (QRYZ)

b
SII(LL P, Ze, zpy S LEXD, 6\ (1L P, Ze, ZpU{x))

The values of the stigmergic variables are asynchronously propagated from one agent to another
after an assignment, and agents that read a value from a stigmergic variable do ask the others
to confirm whether the value is up-to-date. Every value in the stigmergy is timestamped, and
agents always prefer the value with higher timestamp. Specifically, whenever an agent performs an
assignment to a stigmergic variable x, it also records the time when the assignment happened. Then,
it adds x to a set of pending propagation messages Zp. Similarly, whenever an agent accesses the
value of a stigmergic variable y to evaluate an expression, it adds y to a set of pending confirmation
messages Zc. The operations on Zp, Zc will asynchronously trigger a stigmergic message later.
Both propagation and confirmation are constrained by configurable conditions that the sending
and the receiving agents must meet. Specifically, two agents may only exchange messages about a
variable x if their state satisfies a link predicate /.

The rules in Table 4 formalize how stigmergic messages are sent and handled. According to rule
(PROPAGATE), an agent that has a variable x in its set of pending messages Zp can always remove it
from that set by performing a put-transition decorated with the value v and timestamp ¢ of x along
with the evaluations I and L of the local attributes and stigmergic variables, respectively. Rule
(puT) states how an agent can receive a propagation message for variable x. It has to be running in
parallel with a system S which can become S’ via a put-transition; its state, together with that of
the sender, must satisfy the link predicate ¢, (where x is the variable being propagated from S);
furthermore, its own copy L of the stigmergy must contain a timestamp of x lower than the one
inside the message. If these conditions are met, the composite system may evolve to a state where S
becomes S” and the receiver updates L with the new value of x. Notice that the receiver also adds x
to its set of pending messages, so it will contribute to further propagating the value. Confirmation
is similar to propagation but uses the timestamp to discard expired data. Rule (coNFIRM) flushes
the set of pending messages Zc, exactly as rule (PROPAGATE) does with Zp. Rules (QryY1) and (QRY2)
respectively update a stigmergic variable to a newer value or discard it. Notice that in both cases
the variable is also added to Zp to propagate the value.
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The mechanism described above is not adequate when a user wants to describe structured
knowledge (e.g., a pair of coordinates) in the stigmergy with multiple variables, which should be
read and updated atomically: since each variable is treated asynchronously and separately, such
structured knowledge may be inconsistently communicated to other agents. To avoid this, LAbS
allows to bundle these variables together in a tuple, ensuring that they will be treated as a single
entity.

3 SEQUENTIAL EMULATION OF DISTRIBUTED SYSTEMS

Before going into the details of our technique, we illustrate the general idea of our methodology.
Given the formal specification S of the system under consideration, we are interested in checking
whether a given property ¢ holds. To answer this question, we generate from S a sequential program
P. Depending on ¢, we instrument P accordingly and perform either reachability or termination
analysis on it. By construction, the verification verdict for P will determine whether ¢ holds for S.
This is summarised by the following diagram:

Fc?rmall step 1 Symbolically—linked step 2 Sequential Program
Specification ———>  Triple Structure ——> Program . .
Verification
S T P
Property /
¢

In practice, the input system S consists of a set of specifications that define the behaviour of the
different processes, or agents [Milner 1975] of the system, separately. We remark that our semantics-
based technique is not tied to a particular specification language, but can be applied relatively
effortlessly to different languages by taking into account their structural operational semantics
(SOS). Intuitively, the SOS rules of the language describe the effect of the actions of an agent on
its own state and on the rest of the system, as well as the possible interactions between agents.
Throughout this section we assume that the specifications are in CCS, with basic agent interaction
via synchronisation. Later on in the paper (Sect. 4), we show that our technique can apply to more
sophisticated formal specification languages. Our approach currently supports invariant properties
and emergent properties, i.e., in an LTL-like syntax Oy and ¢y, respectively, where ¢ is a predicate
over atomic propositions.

Let us first clarify how we formally interpret a temporal property ¢ over a system S. The SOS of
the input language associates to S a labelled transition system S = (S, A, —). Let AP be a set of
atomic propositions (a superset of those that appear in ¢), and assume that we can always define a

subset I C S of initial states, as well as a successor relation R = {(s,s’) | Jpu.s LR s’}. Then, we can
label each state s with a subset L(s) of AP that captures relevant features of that state. In general,
this labelling depends on the language in which the system was specified. For instance, if S is
a CCS system, one may simply label each state with the set of actions that may be performed
from that state. This would allow to interpret properties related to the reachability of an action
i, such as “S may never perform a p-transition”. A more complex specification language, e.g.,
one featuring stateful agents, may require a more elaborate labelling to represent the individual
configurations of agents within each state. In any case, once such a labelling has been defined, we
obtain a Kripke structure K = (S, I, R, L) representing S: therefore, the question of whether ¢ holds
in S is equivalent to asking whether K | ¢.

To obtain P we follow a two-step procedure. In the first step (Sect. 3.1), we generate a repre-
sentation T for S. Such representation T consists of a set of basic elements, or transition triples,
corresponding to the elementary sub-expressions of S, i.e., the individual actions of the agents as
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they occur in their behavioural specifications. Regardless from the actual computation performed
by an action, at any given time that action may or may not be enabled, depending on its position
within the formal specifications and on the actions that have been already executed.

For instance, in a sequential composition a.b of two actions, only the first action a is enabled at
the very beginning, while the second action b can only enabled after a has been consumed. We can
model the only possible execution of this small example by maintaining a program counter to keep
track of the current execution point, and assigning a unique identifier to each of the two actions a
and b, for instance 1 and 2, respectively. We initialise the program counter to 1 to enable action a;
we set it to 2 right after executing a to enable b, and to 0 right after consuming b, so that a or b
cannot be executed again.

We generalise this reasoning to more involved composition operators, i.e., choice and parallel
composition, so as to model non-deterministic behaviour and the interleaving of the actions in
parallel processes (observe that multiple actions may be enabled at the same time). In general,
we can express the possible execution flows allowed by S in terms of symbolic expressions over
the values of the program counter right before and right after consuming an action. Such entry
and exit conditions will capture all the feasible flows of actions in S by appropriately enabling
or disabling the corresponding triples of T. It is important to observe that this representation
completely sidesteps an explicit enumeration of the possible transitions between pairs of actions
(as it would be in an explicit transition system, for instance), and thus retains the compactness of
the original specifications. We refer to T as a triple structure, or symbolically-linked triple structure
(SLTS) to emphasise this aspect.

In the second step of our procedure (Sect. 3.2), we obtain the target program P by combining
T with the SOS of the input specification language. We add to P global variables to represent the
program counter and some other details about the state of the system. Then, roughly, for each
triple in T we add to P an emulation function that mimics the effect of the corresponding action
in S by manipulating the global variables exactly as prescribed by the SOS rules of the input
specification language. Every emulation function is guarded by an assumption that enforces the
entry condition by appropriately matching the program counter with the unique identifier assigned
to the corresponding action in S; similarly, the exit condition is enforced by setting the next value
of the program counter right before returning from the emulation function.

We complete P with its main function, i.e., the scheduler, which emulates the feasible executions
of S by repeatedly invoking the emulation functions. The scheduler has the form of an infinite loop.
At each iteration, one of the emulation functions is non-deterministically selected and invoked. If
the assumption encoding the entry condition at the beginning of the emulation function is satisfied
the emulation is carried out, otherwise it is discarded. Note that the scheduler captures the possible
interleaving of parallel processes within the behaviour of the same agent, the interleaving of the
actions of the different agents, and the interleaving of system-level transitions, if any, with the
actions of the agents. Consequently, for each possible execution trace of S there exists a feasible
execution trace of P, and the other way around. Finally, we instrument PP for property checking. In
particular, depending on ¢, we reduce the problem of checking whether S [ ¢ to either reachability
in, or termination of, P.

It is worth to remark that our approach is semantics-based: to encode a language, one only has to
provide the appropriate emulation functions to encode the SOS rules of the input language. If the
semantics of the input language specifies additional system-level transitions, e.g., for synchronisation
events that may be triggered in between two actions in S, we introduce additional emulation
functions for them; precisely, we introduce one emulation function for each SOS rule. The exit
condition for such emulation function will not constrain the program counter (as system-level
transitions such as communication events can be triggered asynchronously, and in any case
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depending on the semantics), but will simply encode the very same condition expressed by the
premise of the specific SOS rule being modelled.

3.1 From Formal Specifications to Symbolically Linked Triples

In this section, we define the concepts of triple and triple structure and, based on them, we give
a formal definition of our transformation from S to T. Intuitively, each triple of T symbolically
represents (possibly multiple) transitions in the LTS of the encoded process. The execution of S
is modelled by keeping track of which transitions may be performed at any given time. This is
achieved by equipping the triple structure with a program counter, by guarding each triple with
an appropriate predicate over it, and by updating the program counter right after executing a
transition, so as to correctly enable the next (possibly multiple) feasible transitions.

Definition 3.1 (Transition triple). Let the program counter pc = (pcy, pci, . . ., pcy) be a vector of
integer variables. For the time being, let us assume that the vector is arbitrarily long (i.e., that [ is
arbitrary). Later on, we will see how its length can be constrained. A transition triple (or triple, for
short) t consists of an entry condition, an action, and an exit condition, and is denoted as follows:

t = (>(1), p(1), A(1)).

The entry condition t>(t) = (D>¢(t) A>1(t) A--- AD>(t)) is a predicate over pc that specifies the
required condition at the beginning of the transition, i.e., ¢ is enabled iff. pc |= >>(t). Each conjunct
>;(t) can only predicate on the possible values of pc; or remain unconstrained, i.e., >;(t) = (-).
The action p(t) represents either an elementary action of S or a null action A. The exit condition
<Q(t) = (<o(#) A <1(8) A--- A <y(t)) is a predicate that defines the condition of pc at the end of
the transition. We write <;(t) = () to denote that an exit condition <I(¢) leaves the element pc;
unconstrained.

Definition 3.2 (Symbolically-linked triple structure). A symbolically-linked triple structure (triple
structure) is a pair T = (T, pc), where T is a set of transition triples and pc is a program counter. The
evolution condition of the triple structure is the least relation induced by the following inference
rule:

teT pclEr(t) pd E<(t) <u(t)=() = pc = pe;

w(t)
(T, pe) — (T, pc’)

At any step, zero or more triples can be enabled depending on the current value of pc and on
their entry conditions. Any enabled triple of T may (or may not) evolve by performing the action
u(t) and thus becoming (T, pc’).

The first two premises control the set of enabled triples in T, i.e., those triples whose entry
condition is satisfied by the program counter pc. The last two premises define the set of enabled
triples after consuming u(t).

Observe that the last premise combines the actual value of pc with the exit condition by replacing
each unconstrained conjunct in <I(t) with an equality check on the initial value of the correspond-
ing element of pc. Therefore, the execution of two triples with the same exit condition will not
necessarily yield the same sets of enabled triples, as it does depend on the value of pc as well. For
any triple ¢’ enabled in (T, pc’), we say that t is symbolically linked to t’.

We now introduce an encoding function [[-] that maps process terms to triple structures. Let
us assume that each elementary sub-expression p of the encoded process term is given a unique
identifier, i.e., a positive number id(y). Notice that, even though two sub-expressions may be
identical, their identifiers are still distinct. For instance, if the encoded process contain several
occurrences of the same action, we will reserve a separate identifier for each occurrence. The
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encoding function considers three process composition operators: binary sequential composition
(P; Q); n-ary nondeterministic choice (Z;P;); and n-ary parallel composition (II;P;). We treat action
prefixing (denoted a.P in CCS) as a special case of sequential composition. Processes within a
parallel composition may perform two-party synchronisation according to a (language-specific)
synchronisation algebra. The encoded process may also contain process constants. To simplify our
exposition, we assume that these constants always refer to the process itself, but this procedure can
be easily generalised by recursively calling it to encode also constants that refer to other processes.
We also restrict the use of these constants by disallowing recursion within parallel composition (as
inP £ a.0 | b.P), as well as unguarded recursion (as in P = P + a).

Elementary examples. Before defining the encoding formally, let us consider a couple of elemen-
tary processes (Figs. 1a and 1b). In the first process, an action is followed by a non-deterministic
choice between two further actions. In the second process, three actions are executed in parallel.
The two processes can be expressed in CCS respectively as a.(b.0 + ¢.0) and a.0 | b.0 | c.0. The
figure shows the LTSs of both processes, and the corresponding triple structures generated by our
encoding. Each triple is represented by a box containing the entry condition on the left, the action
in the middle, and the exit condition on the right. An edge between two triples denotes that they
are symbolically linked.

Please notice that in Fig. 1a, we assign to each triple a unique identifier and, to model the fact
that after action a (with id 1) the process can perform either b or ¢ (with ids 2 and 3, respectively),
we put the ids of the triples corresponding to b and c on the right of the a-triple.

In general, we represent entry and exit conditions of a triple as vectors of the same size as the
number of parallel processes plus one. In fact, the different elements of the vectors predicate over
the different elements of pc. Specifically, an integer k at the i-th position of the vector stands for
the predicate pc; = k, while the - symbol means that pc; is unconstrained. A triple is enabled if all
its predicates hold. For example, in the SLTS of Fig. 1a the program counter has only one element,
pco, and the a-triple is only enabled when pcy is 1. The SLTS of Fig. 1b has a program counter of
four elements. The c-triple requires pcs to be 1 in order to be enabled, regardless from the values of
pc at the other positions. The exit conditions are similar to the entry conditions, but in addition
may contain multiple values within the same element. For example, after executing the a-triple of
Fig. 1a, pco is non-deterministically assigned either 2 or 3. Note that many triples may be enabled
at the same time, and that each triple may be symbolically linked to many triples; conversely, many
triples may be linked to the same triple.

Notice at the top of both the SLTSs of Figs. 1a—1b the triples for a null action A. We call them
start triples. A start triple does not correspond to any concrete action in S, and is guaranteed to
be executed exactly once, at the very beginning of the emulation. To ensure that, we initialise the
program counter to the (unique) identifier of that triple. In the SLTS of Fig. 1a the start triple is
enabled when pcy is 4. The exit condition of the start triple is pcy = 1, which enables the initial
action a of the encoded process. Throughout the section we will occasionally denote with * the
start triple, and with pc* the value of the program counter that enables it. For process termination,
we set pc to 0, as in the b-triple and the c-triple of Fig. 1a, and in the A-triple at the bottom of Fig. 1b.

The process of Fig. 1a must necessarily perform a as its first action. Therefore, we symbolically
link the start triple to the a-triple by appropriately matching the exit condition of the A-triple with
the exit condition of the a-triple. In turn, the exit condition of the a-triple may enable either the
b-triple or the c-triple, to model the non-deterministic choice operator +. The other two triples
instead update pc, to 0 to denote that the process terminates after performing either of them.

Fig. 1b shows how a parallel process is encoded by a triple structure of four triples and a program
counter of length 4. The first component of the program counter, pc,, tracks the execution of
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Fig. 1. LTSs and triple structures for two simple CCS processes.

the overall process II (the parent), while each of the other component pc, , ; tracks one of the
sub-processes within the parallel composition (the children of II). Process II may perform any
permutation of actions a, b, and c. Therefore, the exit condition of the start triple enables all their
corresponding triples. We also track the termination of IT by adding a join triple tj,, that has entry
condition pc; = pc, = pc; = 0 and no action. This entry condition is only satisfied when all children
of IT have terminated. If this is the case, the triple sets the element pc, to 0 so as to signal that IT
itself has terminated as well. This addition may not seem necessary at this point, but is needed
when the parallel process is sequentially composed with another process (II; Q). In this case, the
join triple updates the program counter so that the Q process may start upon termination of II.

Notice that each p-triple (¢ = a, b, ¢) symbolically represents all y-transitions of the LTS of II.
The vectorial program counter keeps track of all interleavings within the parallel composition
without explicitly representing them. This retains compactness.

Encoding sequentiality and choices. Let us start by considering processes with no parallel compo-
sition. To encode these processes, a program counter with a single component pc, is sufficient. An
action 1 is encoded as a triple that has entry condition pc, = id(y) and action p. The exit condition
of this u-triple depends on the actions that may follow y in the encoded process. If y is followed by
a generic process term P, we can define a function < [P], returning an exit condition over pc,. This
exit condition only enables the correct triples generated from P, i.e., those corresponding to actions
that may directly follow p. Thus, we call < [P], the enabler of P. To model recursion, we simply
compute the enabler of the entire process and use it as the exit condition of the triples preceding
the recursive call. For instance, consider a process P £ a.P. The exit condition of the a-triple is
< [P], = < [a.P],. In general, we define the enabler of a sequential composition P; Q to be the
enabler of P: intuitively, this means that the triples generated from Q cannot be enabled until P has
terminated. Since we treat action prefixing as a specific case of sequential composition, we apply
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Fig. 2. LTS and triple structure for a process with synchronisation.

this definition to obtain < [a.P], = < [a],, which is the entry condition of the a-triple. Therefore,
the a-triple enables itself after being performed, and the recursive nature of P is encoded properly.

To illustrate the procedure in detail, let us see how the process a.(b.0 + ¢.0) is encoded as the
triple structure shown in Fig. 1a. Let us assume that id(a) = 1, id(b) = 2, id(c) = 3, and let us start
by encoding the .0 sub-term. To do so, we encode b and 0 separately and then use the enabler of 0
as the exit condition of b. The encoding [b] is a single triple with entry condition t>[b], £ pc, = 2;
on the other hand, 0 is the deadlocked process and thus its encoding is the empty set. We define its
enabler to be <1 [0], = pc, = 0, which we use as the exit condition of the b-triple. We encode the
sub-term c.0 likewise. Finally, we encode the sequential composition of a with the choice 5.0 + c.0.
First, we construct an a-triple with entry condition pc, = 1. Then, we compute the enabler of the
choice term as the disjunction of the enablers of its sub-terms (pc, = 2 V pc, = 3). Informally, this
exit condition will set pc, to either 2 or 3, enabling either the b- or the c-triple and thus mimicking
the choice operator.

Encoding of a parallel process. Let us now consider processes that contain a parallel composition
operator, such as the one shown in Fig. 1b. To encode such a process, we give additional, unique
identifiers id(I1;P;), id(P;) to all parallel composition terms and their sub-terms. Each child process
within a parallel composition IT = II; P; may evolve independently of the others. To model that, we
encode each child process as a separate set of triples, whose entry and exit conditions consider
separate elements pcy p,) of the program counter. The enabler of IT is the conjunction of the enablers
of its children: this encodes the fact that all children are enabled from the start. Furthermore, we
add to the sequence another clause pc, = id(IT). Intuitively, by setting pc, to such a value, we
guarantee that only triples from within IT may be performed until IT terminates. Notice that, until
now, we assumed pc to be arbitrarily long. Now, we can constrain its length [ by the maximum
process identifier assigned to II or one of its sub-terms.

This encoding captures the interleaving of the children processes, which progress by alternating
the execution of their actions. However, many process algebras also allow parallel processes
to synchronise on pairs of actions. Let us assume that there is a synchronisation algebra o that
formalises the synchronisation semantics of the input language. Our approach to model two-
party synchronisation, then, is to first compute the interleaving triple structure, and then insert a
transition for each pair of actions that may synchronise. We illustrate this approach on the simple
CCS process a.0 | a.0 (Fig. 2). Its triple structure is obtained by first computing the interleaving
triple structure, resulting in one a-triple ¢, and one a-triple ¢;. Then, we introduce a third triple with
entry condition >>(t,) A I>(tg), action o(a, a) = 7, and exit condition <1(t,) A <(tz). By definition,
whenever t, and t; are enabled, so is this newly created z-triple. If the z-triple is performed, its
exit condition updates the current program counter according to both <1(t,) and <1(z), therefore
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Table 5. Definition of the translation function [-].
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setting both pc, and pc, to 0. Then, the join triple becomes enabled and may set pc, to 0 as well,
denoting that the parallel process has terminated.

Formal definitions. We formally define our translation from a behaviour S to a set of triples via a
function [[P]],f] (Table 5), where P is a syntactic fragment of S, k is a program counter index, and
< is an exit condition. Both the deadlocked process 0 and the recursive invocation K translate to
the empty set. The translation [,u]]k< of a single action y only contains one triple. This triple has
an entry condition checking that pc; matches the identifier of y, action y, and exit condition <.
To translate a sequential composition P; Q, we translate the two processes separately and use the
enabler of Q as the exit condition parameter when translating P. The translation of a choice is
the union of the translations of its terms. Finally, translating the parallel composition of n process
terms P; requires translating each P; with a different program counter index, namely id(P;). Then,
a synchronisation triple is added for each pair of triples corresponding to synchronising actions.
Lastly, the join triple must be added, so that, when all child processes have terminated, the exit
condition < of the parent may be applied. Finally, Table 6 contains a formal definition of the enabler
function which has been informally described thus far. Both definitions are given by induction on
the structure of syntactic fragments P.

Definition 3.3 (Process encoding). Given a process S, let T = [[Sﬂgc"zo and let pc* be a program
counter that does not enable any triple in T. Then, the encoding of S is the triple structure T =

<T U {t*},pc*), where t* £ (pc = pc*, A, < [S]0>.

System-level encoding. We consider a system S to be a composition of concurrent processes (i.e.,
the agents), which we assume to be different from each other and possibly recursive. We also
assume that agents may synchronise on the pairs of actions specified in a synchronisation algebra
gs.

Definition 3.4 (System encoding). Let S = {Sy,...,Sp}. Let T; = (T;, pc™) the encoding of S;. The
encoding of S is a triple structure
(T UT,, pc*)
where T is the union of all T;, with appropriate adjustments to the entry and exit conditions of
triples to avoid spurious symbolic links; T; contains a triple for each pair of triples t; € T;, t; € T;
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Table 6. Definition of the enabler function <1 [-].
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such that i # j and the actions of the two triples may synchronize according to og; pc* is the
concatenation of all pc™*

Intuitively, when we construct T we need to adjust entry and exit conditions of each T; so that
they refer to the correct components of the concatenated program counter.

To illustrate the system encoding procedure, we now describe the triple structure (shown in
Fig. 3) of the 2PC¢cs system described in Example 2.1. It includes the individual triple structure of
each agent, namely Coorbp (Fig. 3a) and WoRKER (Fig. 3b), and an additional set of 7-triples, one for
each pair of complementary actions (Fig. 3¢). The program counter of the whole system has two
components which track the evolution of WoRrkER and CooRb, respectively. The 2PCccs system
admits several traces leading to nok. These traces are still present in its triple structure: one of
them, namely (7, disagree, agree, 7, rollback, nok), is graphically represented in Fig. 4. Each diagram
in the figure represents the triple structure of Fig. 3: black circles denote enabled triples.

Language-specific interaction rules. In some process algebras there is a strict difference between
terms that may freely occur within the structure of a process, and terms that may only appear at
the top level. These operators typically describe additional rules related to the interaction between
agents. For instance, we may see the CCS restriction operator as one such operator. This does not
lead to any loss of generality: a CCS process with any number of restriction operators may always
be expressed as a process with a single restriction operator, by means of suitable a-renamings to
avoid unwanted name capture.

Encoding a restricted system S \ © is straightforward: we simply encode S, then remove any
triple whose action is (equal or complementary to) a member of ®. To illustrate this procedure, let
us now consider the variant 2PC(, ¢ of our two-phase commit scenario. The triple structure of the
restricted 2PC system is obtained from the one of Fig. 3 by removing all triples except the ones
encoding ok, nok, and the synchronisations. This makes the nok triple unreachable from the start
triple.

Supporting multi-party synchronisation. The encoding function of Table 5 assumes that agents
are not necessarily required to synchronise with each other in order to perform an action, and
that synchronisation involves at most two processes. This is enough for CCS, but cannot encode
more complex mechanisms, such as Hoare’s operator. Algorithm 1 sketches a possible approach to
generate the set of triples for a process P defined as n processes composed together with Hoare’s
operator: P = Py |[L]]...|[L]| Pp. In the rest of this paragraph we will also use the shorter notation
P |[L1[2P

First, a set of triples T; is generated for each process P; (line 1). Then, we accumulate a set T
of triples that initially contains all triples in T; whose action may synchronise with some other
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Fig. 3. Triple structure generated from the specifications of the two-phase commit (2PC) example.
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Fig. 4. Graphical representation of a possible execution of the 2PC example.
action « (line 2). Then, for each T;, i = 2,...,n, we accumulate two set of triples which will be

either inserted into T (I) or removed from it (R). Both are initially empty (line-4). For each pair of
triples (¢,t’) in (T X T;) such that their actions may synchronise, we add a synchronisation triple
to I (line 6) and add the triple ¢ to R (line 7). We also add to R all triples ¢ € T such that p(t) cannot
synchronise with any triple in T; (lines 9-12). Intuitively, we need to remove such triples because
Hoare’s parallel operator requires all processes to synchronise on the same action. If T; contains no
triple with such an action, it means that P; is not willing to perform that action. Therefore, a triple
t € T that cannot synchronise with any triple in T; encodes a transition that cannot happen, and
thus must be removed. At the end of each iteration of the outer loop, we update T by removing
all triples that also belong to R, and then adding the triples from I (line 14). Once all T; have been
processed, we also add to T those triples of T3, . . ., T, whose actions are not forced to synchronise
(lines 16-18), and finally add the join triple (line 19).

Having described how Algorithm 1 works, we now state two lemmas concerning its time
complexity and its correctness when computing the SLTS for a process P = |[L]|\_, P;. Intuitively,
Lemma 3.5 states that Algorithm 1 runs in polynomial time, while Lemma 3.6 shows that each
triple within the output of the algorithm represents either an action that does not belong to L, or
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Algorithm 1. Encoding Hoare’s parallel operator as a set of transition triples.
input :A process P = |[L]|L,P;
A synchronisation algebra o that captures - |[L]] -
output: A set of transition triples T

1T [[Pi]]fj(cg(f”_()),iz L...n

2 T {teT|Ja+#*o(u(t),a)+L}

3 foreachi=2,...,ndo

4 I—0,R<0

5 foreach (t,t) € T X Ty.o(u(t), u(t’")) # L do
6 I —T1U[tt]s

7 R—RUt

8 end

9 foreach ¢t € T do

10 if Va.o(u(t), @) # L.Vt € T;.u(t') # a then
11 ‘ R—RUt

12 end

13 end

w | T (T\RUI

15 end

=

6 foreacht e {TiU---UT,}.o(u(t),*) # L do
17 ‘ T—TUt

18 end

19 T « T U tjoin

one that is in L and upon which all processes are willing to synchronise. Thus, T correctly emulates
the behaviour of Hoare’s parallel operator.

LEMMA 3.5 (TIME COMPLEXITY OF ALGORITHM 1). LetP 2 |[L] |?=1P,-, and let o be a synchronisation
algebra that captures - |[L]| -. Assume that each P; contains at most m actions, and that no two actions
within each P; may synchronise. Then, Algorithm 1 with input (P, o) terminates in time O(n - m?).

Proor. The lack of synchronisation within each P; implies that each triple structure T; contains
no synchronisation triples. Thus, each T; contains at most O(m) triples and may be generated in
time O(m). Therefore, both line 1 and the loop at lines 16-18 run in time O(n - m). Let us now
focus on the loop at lines 3-15. The inner loop at lines 5-8 features a Cartesian product between
two triple structures T, T;. As said above, T; contains O(m) triples. We claim that T also contains
O(m), for all iterations of the outer loop. In fact, T is initialised to a subset of Ty, so it contains
O(m) triples before the first iteration of the outer loop (line 2). At each iteration, T is updated by
adding and removing triples that belong to sets I and R, respectively (line 14). Notice, however,
that I and R are empty at the beginning of each iteration of the outer loop (line 4), and that every
time time a triple is added to I one is also added to R (lines 6—7). Therefore, T always contains
O(m) elements. The inner loop, then, must check O(m) - O(m) pairs of triples, and thus runs in
time O(m?). Therefore, the outer loop runs in time O(n - m?) and dominates the overall running
time of the algorithm. O

LEMMA 3.6 (CORRECTNESS OF ALGORITHM 1). Let P = |[L]|_,P;, o a synchronisation algebra
that captures - |[L]| -, and T the triple structure obtained by running Algorithm 1 on input (P, o).
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Additionally, let Ty, . . ., T,, the triple structures generated after executing line 1 of Algorithm 1. Then, a
triple t belongs to T if and only if one of the following holds:

(1) t belongs to some T; and o(pu(t),*) # L;
(2) t is the join triple;
(3) thereexistty € Ty, t €Ty, ..., t, € Ty such thatt = [... [[t1, t2]6s - - -Jo» tn] o

Proor. All triples that satisfy (1) or (2) are added to T at lines 16—-19. To show that (3) is a
sufficient condition for ¢ being in T, let us consider how triples are added to T throughout the
algorithm. Initially, T contains those triples of T; whose actions may synchronise according to L
(line 2). Whenever we find within some T; a triple ¢’ that may synchronise with some triple t € T,
we replace ¢ with the synchronisation triple [[t,t'], (lines 5-8). Furthermore, if for some ¢ € T,
some T; contains no such triple, we remove ¢t from T (lines 9-12). Therefore, when the loop at
lines 3-15 ends, only those triples that satisfy (2) are in T.

Since no other triples are added to T, a triple that satisfies neither (1), nor (2), nor (3) cannot be
in T when the algorithm terminates. O

3.2 From Symbolically Linked Triples to Imperative Programs

We now describe how to generate the emulation program P for the system S, relying on T as an
intermediate representation for the individual behaviours of the agents. The structure of P is shown
in Listing 1, where N denotes the total number of agents in S, pc[N] the program counter, and agent,
action respectively the identifier of the agent and of the action of S currently being emulated.

Separate emulation functions in P encode the transition triples obtained by the procedure from
Section 3.1. The program in the figure represents a simplified version of the encoding for 2PC system
described in the previous section and whose SLTS is shown in Fig. 3. For instance, function vote
emulates the triple vote in Fig. 3a. The assume statement at the beginning implements the entry
condition of the triple (see e.g. line 4). The nondeterministic assignment and the assume statement
at the end implement the exit condition. For conciseness we do not report the other emulation
functions. When dealing with more sophisticated SOS rules, it may be necessary to define additional
global variables to represent other information about the state of S. The emulation functions can
manipulate such global variables following the operational semantics of the specification language.
We will further discuss the details of implementing emulation functions in Section 4.

If multiple agents with the same behaviour are defined in S, we only need to encode that
behaviour into emulations functions once. We additionally introduce a global variable id that the
emulation functions can access to determine which agent is performing the action (not shown in
the program). Thus, we can concisely represent systems that contain multiple agents with the same
behaviour. Although not shown in Listing 1, one could use dynamically allocated arrays to store
the program counters of the agents and other information about their state. This type of encoding
would enable us to model agents that are able to spawn new agents as part of their behaviour,
giving rise to systems of dynamic (possibly unbounded) size.

In the rest of the encoding of Listing 1, we embed the scheduler (lines 28-41) along with a few
ancillary functions. The scheduler initialises the global state of the program by invoking function
init() (line 29), that also initialises the program counters of the agents according to the exit
conditions of their start triples. This is equivalent to implementing each start triple as an emulation
function and initialising the program counters according to pc*.

At each iteration of the main loop, the scheduler nondeterministically picks an agent to simulate,
say agent = i, by invoking next () (lines 22-26). Then, it simulates an action of S; by invoking the
corresponding emulation function. Any of the emulation functions can be selected at each iteration
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Listing 1. Emulation program for the 2PC system.

1 int pc[N], agent, action;

2

3 vote() {

4 assume (pc[agent] = 1);

5 action := wote;

6 pcLagent] := x;

7 assume (pc[agent] = 2 VvV pcl[agent] = 3);
8 3

9

10 // Other emulation functions
11

12 init() {

13 pcl[1] := 11; // Worker

14 pclf@] := 1; // Coord

15 3}

16

17 check () {

18 if(—-always) error;

19 if(eventually) exit;

20 3}

21

22 next() {

23 if (fair) agent := (agent + 1) % N;
24 else agent := x*;

25 assume (agent < N);

26}

27

28 main() {

29 init();

30

31 while (true) {

32 next ();

33

34 choice := x;

35 if (choice = 1) vote();
36 if (choice = 2) agree();
37

38

39 check ();

40 }

41 }

of the scheduler. However, the assumptions on the program counter of agent will prune away
unfeasible executions by enforcing the entry conditions.

The nondeterministic choice of the agent to simulate models the interleaving of the behavioural
processes of the agents. In addition, the scheduler may nondeterministically attempt to invoke
a system-level emulation function (e.g., synchronisation in CCS). This linearises the concurrent
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execution of agent-level transitions (Sy,. .., S;) and of system-level transitions and yields differ-
ent advantages. First, it models the interleaving compactly: thanks to symbolic expressions and
nondeterministic updates to the program counters, it can represent an exponential number of
feasible executions. Second, it removes concurrency and therefore allows to use program analysis
techniques that only support sequential programs. Third, it allows to model scheduling variations by
simply restricting the nondeterminism over the interleaving of agents, i.e., by overriding the next ()
function. Currently, we provide a completely nondeterministic scheduler as well as a round-robin
one, depending on the flag fair.

A function check() encodes the property ¢ to verify (lines 17-20). The code sample shows both
types of encodings; however, in practice only one property at a time is encoded. In the case of an
invariant property, we simply add the formula to the program as an assertion, which is checked
at every step of the scheduler. For instance, if we want to instrument the program of Listing 1 to
verify whether the fail action is unreachable in the 2PC system, we simply replace the body of
function check() with the statement if (action = fail) error;.

To deal with emergent properties, we use the state formula as a termination condition for the
whole program. Then, we can perform termination analysis on the generated program. Since the
program can only terminate when ¢ holds, verifying that the program unconditionally terminates
is equivalent to verifying that ¢ holds in S. In our example program, we can check whether an ok
action is always reached in the 2PC system with the statement if (action = ok) exit;.

If the source language defines agents with individual states, we can easily support properties
over them, possibly containing existential and universal quantifiers over the agents. To do so, we
first apply quantifier elimination and then encode the resulting first-order formula into a predicate
over the variables of P that encode the state of the agents.

Size of the emulation program. The encoding function of Sect. 3.1 generates at most one triple
for each elementary action in the system (triples corresponding to restricted actions are removed),
plus one triple for each pair of synchronising actions. The emulation program, then, will contain
one emulation function for each of these triples. The size of the program counter for each agent is
linear in the number of parallel processes in its behaviour.

Translation of Counterexamples. We now discuss counterexample generation for safety property
violations. By construction, if a given safety property of interest can be violated in the system S
under analysis, the emulation program P will contain a reachable assertion failure (we will sketch
a proof of this claim in Section 3.3). In that case, it may be possible to obtain a counterexample
trace for S, depending on the specific technique and tool employed for the analysis of P. In general,
if a counterexample for P is precise enough, it can be translated into one that refers to S.

Clearly, the program state in the untranslated counterexample will mix the variables of the emu-
lation program that represent important features of the original system (e.g, the agents’ attributes,
or their environment) with the variables used by the scheduler (pc, action, choice, ...) as well as
other variables (if any) introduced in the emulation functions to implement the semantics of the
source language (such as the global variables declared at the beginning of Listing 2). Intuitively,
the last group of variables (and transitions involving them) are irrelevant to the end user and
thus should be discarded?, while the transitions on the schedulers’ variables allow to reconstruct
the sequence of active processes performing an action in S, and thus provide the skeleton of the
counterexample for S. The counterexample is completed by decorating this skeleton with the state

2We are assuming that the operational semantics and their emulation functions are correct. If one is interested in
debugging the operational semantics rules, then it would be useful not to remove those transitions.
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transitions resulting from applying the individual actions as described in the system specifications
and prescribed by the operational semantics.

More concretely, let us assume that the counterexample zp for the emulation program is a
sequence of assignments represented as pairs (varp, v), where varp is the name of some variable in
the emulation program and v its assigned value. In this case, what we want to obtain is a translated
trace 7s consisting of triples (id, vars, v), denoting that the agent with identifier id is assigning v
to vars. To that end, during the generation of P, we build a lookup table I that maps each variable
of P to either a variable of S or to L, if the variable is irrelevant. Keeping in mind that P uses a
variable agent to store the id of the agent currently selected by the scheduler, we translate zzp into
7ts according to the following procedure:

(1) discard all pairs (var,v) € mp such that var # agent and I(var) = L;
(2) for every remaining pair (var,v):

(a) if var = agent, store v in a variable id;

(b) otherwise, append (id, [(var),v) to rs.

3.3 Correctness Sketch

We now sketch a correctness proof for our two-step encoding. Intuitively, such proof shows that,
given a system S and an invariant property ¢, an error state is reachable in the emulation program
P generated from them if and only if S violates ¢.

As shown in Listing 1, P is composed of a scheduler, and separate functions to emulate the
transitions of S. The user has full responsibility of the actual implementation of the emulation
function corresponding to each action. When reasoning about correctness of our encoding, we
simply assume correctness of her/his implementation. At each iteration, the scheduler emulates a
transition by calling one of these functions. The interleaving between agents is modelled by the
nondeterministic assignment to the agent variable (lines 22-26). State variables are only altered
within an emulation function, and the property check is performed right after each emulation step
(line 39), so that a violation of ¢ in S will immediately cause an assertion failure in P.

Note that the loop in the main function of P models all interleavings of actions that can be
performed by any agent by means of two nondeterministic assignments (lines 32-34 in Listing 1).
In turn, actions (rather, their emulation functions) are enabled based on assumption statements
modeling their entry condition (e.g., line 4) which prune away all unfeasible executions. The
problem, then, is to show that the flow of actions for the individual agents of S is preserved in
P. In particular, we wish P to reproduce any possible trace of S without introducing spurious
executions. Intuitively, this is guaranteed in P by the entry guards and the exit assignments within
the emulation functions: the entry guards restrict the possible emulation functions that can be
invoked by the scheduler at the current emulation step; the exit assignments update the set of
emulation functions from which the scheduler can nondeterministically pick at the next emulation
step. For example, considering Fig. 1a, right after executing action a, nondeterministically either b
or ¢ can be executed.

LEMMA 3.7 (COMPLETENESS OF SEQUENTIAL EMULATION). For each feasible execution f of S, there
exists a feasible execution g of P such that in g the emulation functions are invoked exactly in the
same order as their corresponding actions in f.

Proor. The proof is by induction on the length of the execution trace f of S. In the following,
we assume for simplicity that S is composed of a single agent.

In the init() function (lines 12-15), we initialise the program counter of P so that only the
emulation functions for the initial actions of S are enabled, and thus only these functions can be
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executed in the first iteration of the scheduler (Section 3.2). Thus, the lemma holds for all traces of
length 1.

Now, assuming that P correctly emulates S up to n — 1 actions, let § be the n-th action for some
trace of S, and « the action immediately preceding . We need to show that there exists an execution
of P such that the (n — 1)-th and n-th emulation steps invoke their emulation functions f, and fg,
respectively. By the inductive hypothesis, P emulates S up to n — 1 actions, therefore there must
exist an execution of P where f, is invoked at the (n — 1)-th emulation step.

If f immediately follows a within a sequential composition in S, the exit assignment of the
program counter at the end of f, will match the guard at the beginning of f, and thus fz may be
invoked right after emulating a.

If § and @ occur as parallel actions in S, then  might have been performed instead of « as the
(n — 1)-th action for some other trace of S. In that case, by inductive hypothesis, f3 would have
been invoked instead of f,. This means that the guard for fg is already satisfied at the (n — 1)-th
iteration of the scheduler. The exit assignments and entry guards within f; and fz in P work on
different elements of the program counter, and thus cannot interfere with each other (Fig. 1b).
Therefore, f can be executed right after f,.

O

LEMMA 3.8 (SOUNDNESS OF SEQUENTIAL EMULATION). For each feasible execution g of P, there
exists a feasible execution f of S such that the actions in f follow the same order in which the emulation
functions are invoked in g.

Proor. If g has length 1, then it is composed by a call to an emulation function. By construction of
the intermediate representation T, and of the start triple in particular, this function must necessarily
correspond to an initial action of S. Thus, all executions of length 1 satisfy the lemma. Let us now
assume by way of contradiction that there exists an execution of P where f, is invoked at the
n-th emulation step right after f,, but y never follows « in any trace of S. Assume, again, that P
correctly emulates S up to the first n — 1 actions (inductive hypothesis). If f, is called at the n-th
iteration of the scheduler, then its guard must be satisfied. Two cases may apply: either the guard
was also satisfied at the previous emulation step, or it was not.

In the first case, there exists another execution of P where ), is the (n — 1)-th called function. By
the inductive hypothesis, y must be the (n — 1)-th action for some trace of S. If « and y can both
be the (n — 1)-th action, either they are parallel actions or they occur within a nondeterministic
choice in S. If they are parallel actions, then we have found a contradiction: there must be a trace
of S where y follows a. On the other hand, if there is a nondeterministic choice between « and y,
then the exit assignment in f,, is constructed so that the entry guard of f, can never be satisfied
(Fig. 1a). Thus there cannot be any execution of P where f,, is followed by f,.

The second case implies that an exit assignment at the end of f, causes the guard of f, to be
satisfied. To do that, the exit assignment of f, must take into account the guard of f,. However,
this only happens when « is the last action of some sub-process of S, which in turn is sequentially
composed with some other sub-process that has y as a potential initial action. But then there must
exist a trace where y follows a. O

THEOREM 3.9 (CORRECTNESS OF SEQUENTIAL EMULATION OF INVARIANT PROPERTIES). Assuming
that ¢ is an invariant property, given the system specification S and the property ¢, program P
contains a reachable assertion failure if and only if ¢ does not hold in S, i.e., there exists a feasible
execution trace of S that violates ¢.

ProoFr. The theorem directly follows from Lemma 3.7 and Lemma 3.8.
O
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Table 7. Simplified assignment operations to the stigmergy and the environment.
PEEL P t=tod)) Zc=Zp=0
(I,L,P,Zc,Zp) > (I,L & (x,0,1), P, Zce, Zp U {x})

(LsTIG)

x=o _ _ e
P P ZC_ZP_(D (ENV]) aeA auia’

(IL,P, Ze, Zp) == (I, L, P', Zc, Zp) (E, A) = (E[x — 0], A[a’/a])

(ENV2)

4 EMULATING LABS SPECIFICATIONS

In this section, we present an experimental evaluation that we conducted with a prototype tool that
implements the technique from Section 3 to automatically encode LAbS system specifications as
sequential C programs, and re-uses off-the-shelf tools developed for the C language in a black-box
fashion to carry out the analysis.

We chose C as the target language due to the abundance of mature tools implementing reachabil-
ity and termination analysis techniques, such as symbolic execution [King 1976], bounded model
checking [Biere et al. 1999], explicit-value analysis [Beyer and Lowe 2013], predicate-based abstrac-
tion [Beyer et al. 2007], k-induction [Sheeran et al. 2000], property directed reachability [Bradley
2011; Eén et al. 2011; Komuravelli et al. 2014], and interprocedural analysis [Reps et al. 1995]. We
use our prototype tool to analyse the selected systems with modern implementations of the above
techniques, and report our findings.

Modelling complex SOS rules. To model the complex SOS rules described in Section 2.3, in the
emulation program we add a few global variables to model the extended state of each agent, i.e.,
(I,L,Zc, Zp). In particular, we represent each state variable of S as a global array in P indexed on
the identifier of the agent, to conveniently arrange the states of the different agents.

We then introduce, for each SOS rule, a system-level emulation function whose entry condition
leaves the program counter totally unconstrained, so that system-level actions can interleave with
the actions of the agents at any time. To prevent spurious triggering of a rule, we add to the
entry condition additional constructs that model exactly the premises of the rule. In the emulation
function, these constructs are naturally expanded into appropriate assumptions on the newly added
global variables. The body of the emulation function will mimic the SOS rule by appropriately
manipulating the global variables of the emulation program as prescribed by the rule.

It is worth to recall that providing the emulation functions for each SOS rule is the only manual
effort required by our prototype implementation. This is a one-time effort: once the code fragments
have been provided for a given language, the procedure can automatically generate emulation
programs for every specifications written in that language. In principle, the user may exploit any
construct or data structure supported by the target language to describe the state of the system; in
practice, however, these choices may affect the feasibility of the analysis. In the context of C, for
instance, we have avoided pointers and dynamic memory allocation, in order to obtain programs
whose analysis is supported by most verification tools and could be faster to analyse.

Modelling assignment actions to stigmergic variables. Now that the SOS rules for stigmergic
interaction are put in place, we are able to introduce the LAbS semantic rule for update actions on
stigmergic variables, i.e., variable <+ value, and discuss a fragment of C code that implements it.
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Listing 2. Implementation of rule LsTiG in C.

1 // Global variables 12 // Code fragment for rule LSTIG
2 bool Zp[N]l[vars], Zc[NJ[vars]; 13 // Check Zc=Zp=90

3 int Zp_count[N], Zc_count[N]; 14 assume(Zp_count[tid] == 0);
4 int L[N][vars], TimeOf[N][vars]; 15 assume(Zc_count[tid] == 0);
5 16 // Implement L@ (x,0,t)

6 // Implement tod() 17 int t = tod();

7 int _tod = 0; 18 L[tid]1[x] = wv;

8 int tod() { 19 TimeOf[tid][x] = t;

9 return _tod++; 20 // Implement ZpU {x}

1 3 21 Zp[tidl[x] = 1;

11 22 Zp_count[tid]++;

The action is formalised by rule (LsT1G) in Table 7, where for conciseness we report a simplified
version that only allows assignment of values rather than complex expressions. In the rule, tod()
represents the timestamp for the new value. The effect of the action is the insertion of a value and
its timestamp in the local stigmergy of the agent (denoted by L @ (x, v, t)), so that the stigmergic
propagation rules discussed earlier will asynchronously propagate the value across the local
stigmergies of the other agents. The variable is then added to the set Zp of variables to propagate.

Observe that all agent-level rules are guarded by the condition Z¢ = Zp = 0, meaning that an
agent has to propagate or confirm all pending variables before continuing its execution.

In the C implementation of the rule, shown in Listing 2, we use N and vars to denote the number
of agents and of stigmergy variables, respectively. We use several global variables to track the state
related to these rules. Two arrays of Booleans represent Zc and Zp for each agent: for convenience,
we store the number of elements in these sets into two arrays of integers Zp_count, Zc_count.
Lastly, two arrays L and TimeOf store the value and time for every stigmergy variable of each
agent. All these arrays have a statically-determined size. We also implement tod() as a function
that increments a value from a global variable and returns the result.

The code fragment implementing the rule is parameterised in the identifier tid of the agent
performing the operation. First, we encode the premise Zc = Zp = 0 by means of two assumption
statements over the counters Zp_count[tid], Zc_count[tid]. If either condition is violated, the
emulation function cannot proceed. Otherwise, we encode L & (x, v, t) by assignments to L and
TimeOf, and finally implement the insertion of x into Zp by altering the arrays Zp and Zp_count.
This fragment will be injected into the emulation functions of all triples whose action is a stigmergy
assignment (after replacing x and v with the actual variable and value in the assignment).

Modelling environment update actions. This language provides the notion of environment, i.e., a
data store shared among the agents and operated in a shared-memory fashion. This is formalised
by (a simplified version of) rule (ENv;) in Table 7, which is similar to rule for stigmergic update
actions just seen, and lets an agent signal its willingness to assign a value to a shared variable.
Then, rule (ENV;) states that a system composed by an environment E and a set of agents A, such
that some agent a is willing to perform an environment update and become a’, may evolve to a
new system where E and a are replaced by the updated environment and a’, respectively.
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Listing 3. Specification of flocking behaviour.

1 system {

2 extern = _birds, _size, _delta

3 spawn = Bird: _birds

4 3

5

6 stigmergy Alignment {

7 link = ((x of ¢l - x of ¢c2) * (x of ¢l - x of c2)) +
8 ((y of ¢1 -y of c2) » (y of ¢l -y of c2))

9 <= _delta * _delta

10

11 dirx, diry: {-1,1}, {-1,1}

12 3}

13

14 agent Bird {

15 interface = x: [0.._size], y: [0.._size]

16 stigmergies = Alignment

17 Behavior = Move; Behavior

18 Move = x, y <- (x + dirx) % _size, (y + diry) % _size
19 3}

20

21 check ¢

22 Consensus = eventually forall Bird b1, forall Bird b2,
23 dirx of bl = dirx of b2 and diry of bl = diry of b2
24}

4.1 Prototype Implementation

In our prototype we use a machine-readable specification language based on LAbS. Listing 3
shows an elementary model of flocking behaviour expressed in this language. External parameters
identified with a leading underscore (_birds, _size, and _delta) represent the number of agents,
the size of the arena, and the visibility range of an agent, respectively (line 2). Each agent has an
initial position and direction of movement. The initial position is stored in two variables x, y that
are non-deterministically initialized to a value between @ and _size-1 (line 15). The direction of
movement is recorded as a pair of values dirx, diry (line 11) that can be either -1 or +1, depending
on whether the bird is moving negatively or positively along either axes (for example -1, +1 means
that the bird is headed left-top). The agents simply keep moving along their current direction
(lines 17-18). The direction variables dirx, diry are stigmergic, and their propagation is controlled
by the link predicate at line 7. Specifically, when the distance between two birds is _delta or less,
they will asynchronously agree to move in the same direction. In this example we aim at checking
that all birds eventually have the same direction, regardless of their initial direction and position,
i.e., whether every pair of birds in the system has the same values for dirx and diry (line 22).

Our prototype takes as input the system specifications in the format described above, the external
parameters (if any), the scheduling policy to enforce (either full interleaving or round-robin), and
the name of the verification tool to use as a back end for the analysis.

After parsing the input specification, the tool generates the triple structure (Sect. 3.1), and then the
sequential program (Sect. 3.2). The program is then prepared for either reachability or termination
analysis. Depending on the property of interest, one of the statements at line 18 and line 19 of
Listing 1 is removed. For invariant properties, reachability of the error statement (Listing 1, line 18)
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will indicate that the property does not hold. For emergent properties, successful termination of
the program (Listing 1, line 19) will imply satisfaction of the property. Similarly, one of the two
branches (Listing 1, line 23) is removed, depending on the scheduling policy. The program is then
instrumented for the specific analysis back end by introducing the correct primitives for non-
deterministic initialisation of variables, assertions, and assumptions. The instrumented program is
eventually fed to the back end to carry out the analysis.

4.2 Case Studies

We now describe our selection of systems used for our experimental evaluation.

Flock is the example introduced in Section 2.3, and specified in Listing 3. This system is a
simplified version of the boids model [Reynolds 1987], that implements only the alignment rule.
Agents are placed in a two-dimensional arena and start from a chaotic state of motion: when they
are sufficiently close, they may agree to move in the same direction. We would like to make sure
that all the agents eventually move in one direction. In our experiments we have used the following
values for external parameters: (_birds = 3, _size =5, _delta = 5). For this system we assume
round-robin scheduling.

Boids extends the flock example with a cohesion mechanism that makes agents move closer to
each other [Reynolds 1987]. We add separate stigmergic variables to represent the group leader,
the group size, and the position of the leader. Each agent is initially the leader of its own group,
which has size one; however, an agent may become a follower of another group which is at least as
large as the one it belongs to. If so, the agent updates the size count of that group to include itself.
Leaders also store their position in the stigmergy: a follower that is too distant from its leader may
decide to move towards it. As a consequence of the additional rules, this system is considerably
more complex than flock. We are interested in checking whether all agents eventually reach a
consensus on the leader after an arbitrary number of transitions. The parameters for this system
are the same as in flock. We assume round-robin scheduling.

Formation describes a system of N agents placed on a segment of length L. They start from
non-deterministically-chosen positions on the segment and must move so that their distance from
each other is eventually § or more. To achieve this goal, all agents repeatedly write their id on two
variables left, right. Due to the link predicates, these values may only be changed by other agents
that are closer than §. So, for instance, when an agent notices that left is different from its own id,
it makes a step to the right (and vice versa), unless it is at either position 0 or L — 1. We instantiate
the specifications with parameters (L = 10, N = 3,5 = 2). We wish to check that no agent will ever
be in a position outside of the range [0, L — 1], and also that all the agents eventually are at least at
a distance § from each other. For this system we assume round-robin scheduling.

Approx is an approximate majority population protocol presented in [Angluin et al. 2008]. Each
agent has an initial opinion, encoded as either 0 or 1. Let n and y the number of agents with initial
opinion set to 0 or 1, respectively. The aim is to reach a state where all agents have the opinion that
initially has the majority. We analyse a three-agent system approx-a (y = 1, n = 2) and a five-agent
one, which we call approx-b (y = 2, n = 3). In both systems, y is initially the minority opinion. A
safety property of interest is that the system should never reach a state where all agents agree on y.

Maj is another population protocol where agents should eventually have the opinion that had
the majority in the initial state. The properties of interest are the same as those of the approx
protocol. However, this one has been proven correct for any initial configuration [Aspnes and
Ruppert 2009]. Automated tools for the analysis of population protocols have also been able to
verify it [Blondin et al. 2018]. As with the other population protocol, we analyse this system with
parameters (y = 1,n = 2), and are interested in checking that a state where all agents agree on y is
never reachable.
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4.3 Experimental Results

For the experiments we considered the following categories of techniques and tools. We tried
Symbiotic [Chalupa et al. 2017], which combines symbolic execution with program slicing to per-
form both reachability and termination analysis. For bounded model checking, we tried SAT-based
bounded model checking with CBMC [Clarke et al. 2004], and SMT-based bounded model checking
with ESBMC [Gadelha et al. 2018], and SMACK [Rakamaric and Emmi 2014]. We also consider a
competition release [Beyer 2019] of CBMC, which performs termination analysis by repeatedly
unrolling all loops with an increasing bound and using BMC to check unwinding assertions. An
unwinding assertion is an assertion statement that is placed after the k-th iteration of an unwound
loop, and is satisfied if and only if the unsound loop never performs more than k iterations. If all
unwinding assertions are satisfied for a given bound k, then all loops have a bounded number of
iterations and thus the program unconditionally terminates. For abstraction-based techniques, we
experimented with summary-based interprocedural analysis based on different abstract domains as
implemented in 2LS [Schrammel and Kroening 2016]. We tried explicit-value analysis and a CEGAR
loop based on predicate abstraction with CPAchecker [Beyer and Keremoglu 2011]. We also used
an automata-based CEGAR loop implemented by Ultimate Automizer [Heizmann et al. 2013]. As
for inductive techniques, we evaluated the implementations of k-induction [Sheeran et al. 2000]
provided by 2LS [Chen et al. 2015], CPAchecker, and ESBMC. We also experimented with more
recent algorithms based on property directed reachability (PDR): RecMC [Komuravelli et al. 2014]
as implemented by Seahorn [Gurfinkel et al. 2015], and the IC3 [Bradley 2011] implementation of
VVT [Guinther et al. 2016].

In a preliminary experimental phase, we also tried other tools, namely: AProve [Giesl et al. 2017]
(which performs termination analysis based on symbolic execution), IKOS [Brat et al. 2014] (abstract
interpretation), and Kratos [Cimatti et al. 2011] (lazy predicate abstraction). However, these tools
did not produce any conclusive results on our programs and thus we did not consider them for
the final selection of verification tasks. Specifically, AProve always returns a maybe verdict; IKOS
declares that the safety of the benchmarks cannot be conclusively proven and quits; lastly, all
Kratos benchmarks hit the time limit. It may be interesting to investigate whether future versions
of these tools would be able to provide conclusive verdicts for our emulation programs.

All the experiments were performed on a dedicated 64-bit GNU/Linux workstation with kernel
4.9.95, equipped with 128GB of physical memory and a dual 3.10GHz Xeon E5-2687W 8-core
processor. We set a time limit of 12 hours and a memory limit of 32 GB for the analysis.

Tables 8 and 9 report our experimental results in invariance (reachability) and emergence
(termination) analysis of C emulation programs. In both tables, the top row and the leftmost
column refer to the considered multi-agent system and the program analysis technique (along with
the specific implementation), respectively. For each system, we include a reference to existing work
describing it, and to previous verification results whenever possible.

We list the different techniques from top to bottom according to the following categories. For
Table 8 the categories are: symbolic execution, bounded model checking, abstraction-based tech-
niques, and induction-based techniques. For Table 9 we consider symbolic execution, bounded
model checking with completeness threshold detection, and interprocedural analysis based on
summarization. The bottom of the table reports the verdict we were able to draw by only inspecting
our experimental results, without exploiting any previous knowledge of the benchmarks. In the
internal cells of the two tables, we report the partial verdicts along with the decision time (in
minutes) for each tool and system. Conclusive results are marked with v or X to respectively
denote that the property under analysis was successfully verified or violated. Superscripts provide
further details on the inconclusive experiments.
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Table 8. Analysis of invariant properties (reachability) =% Timeout (12 hours). -%: Inconclusive analysis
reported by the tool. —¢: Out of memory (32 GB). ~": The tool requires an array-free encoding.

formation| approx-a |approx-b maj

Symbolic execution (Symbiotic) 0.01 v | 206.83 X | 6047 X —a
Bit-precise BMC (CBMC) _a 001 X | 001 X -a
Word-level BMC (ESBMC) —a 0.08 X | 0.07 X -a
Word-level BMC (SMACK) -a 0.67 X 1.83 X —a

Explicit-value analysis (CPAchecker)” - | 337.08% - 16237 V/
Predicate abstraction+CEGAR (CPAchecker)* 034 v 0.08 X | 003 X ¢
Automata+CEGAR (Automizer) 598 1.17 X | 457 X -4
k-induction (CPAchecker)” -c 0.1 X | 005 X -
k-induction (2LS)" | 0.05 v | 001 X | 001 X | -

k-induction (ESBMC) 0.01 v 0.01 X | 005 X | 001 v

PDR (Seahorn) 03 v 0.03 X 05 X | 467 V

PDR(VVT) | 0.03 v | 001 X| 001 X| 001 vV
v X X v

Main insights. By looking at the separate columns of both Tables 8 and 9, we observe that for
each of the systems under consideration at least one tool is able to generate a conclusive verification
verdict, and that the conclusive verdicts for a given system are always consistent. Therefore, we
can confidently draw a conclusive verification verdict for every system.

Interestingly, our verdicts do confirm all the known results from the literature, specifically, for
(approx-a, approx-b, and maj) we can confirm the findings in [Aspnes and Ruppert 2009; Blondin
et al. 2018]. Even more interestingly, we manage to successfully verify a liveness property for
boids. It is worth to observe that this requires analysis of the behaviour of the flock up to an
unbounded number of steps, which is particularly challenging. Besides simulation [Olfati-Saber
2006], we are only aware of one previous successful attempt to analyse this system in the bounded
case [De Nicola et al. 2020a]. We are not aware of previous attempts of unbounded verification of
this system.

Analysis of invariant properties. As shown in Table 8, symbolic execution [King 1976] gives
correct results but seems to have issues with performance. The analysis of both approx-a and
approx-b takes three and one hour, respectively, and the tool is not able to verify maj due to timeout.
Bounded model checking [Biere et al. 1999] is consistently quick in detecting property violations,
with either SAT or SMT decision procedures, and all the considered tools for this category were able
to generate precise violation witnesses. However, this technique alone cannot provide conclusive
results in the absence of property violations, such as formation and maj. For these systems, we
repeatedly increased the verification bound until timing out, to double-check the consistency with
the other approaches.

Abstraction-based analysers [Beyer and Lowe 2013; Graf and Saidi 1997; Heizmann et al. 2013]
seem to complement these limitations, as they can successfully determine the safety for formation
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Table 9. Analysis of emergent properties (termination). -4 Timeout (12 hours). —: Inconclusive analysis
reported by the tool. —=¢: Out of memory (32 GB). — : The tool requires an array-free encoding.

formation flock boids

Symbolic execution (Symbiotic) | 488.40° _a _a

BMC+completeness threshold (CBMC) | 21432 « | 24384 | 4952 V/

Summarization+intervals (2LS)” 0.08% 0.03% 32.15°
Summarization+equalities (2LS)‘ 319.40 107.72 v/ -é
v v v

and maj in half of the cases. In contrast, the results on the unsafe instances (confidently claimed
as such via bounded analysis) are sometimes inconclusive. Analysis procedures based on CEGAR
loops [Clarke et al. 2003] correctly identify the approx programs as unsafe and the formation
program as safe, but they run into memory or time limits issues when considering the more complex
maj program. This confirms once again that under- and over-approximation are orthogonal to each
other.

Interestingly, we observe the superiority of inductive techniques, i.e., k-induction® [Sheeran et al.
2000] and property directed reachability [Bradley 2011], over the other approaches we considered.
These techniques exhibit outstanding performances with consistent verdicts; produce precise
witnesses for violated properties, with comparable performances to the fastest bounded model
checker; and are competitive, if not superior, to abstraction-based tools on safe systems.

Analysis of emergent properties. In Table 9 we observe overall less data points as well as a smaller
portion of conclusive verdicts with respect to Table 8. In fact, the presence of non-linear operations
appears to be a major hindrance for the tools that we have considered for termination analysis. This
issue is related to the specific language considered in our experimental evaluation, as non-linearity
stems directly from the operational semantics.

Nevertheless, we do manage to find at least one conclusive verdict for each problem. In particular,
2LS can confirm the termination of flock when using the equalities abstract domain, while bounded
model checking with completeness detection is able to verify the termination for all three systems
under verification, including boids.

Translating CBMC error traces. We have instantiated the counterexample translation procedure
described in Section 3.2 to automatically translate the error traces from CBMC into a readable
LADS-like syntax. Listing 4 shows a translated counterexample for system approx-b, which reports
the initial state of the system (lines 1-14), followed by a sequence of assignments performed by
the agents that leads to a property violation (lines 15-32, where Yes and No refer to the initial
opinion of the agent performing the action). Supporting other verifiers would take some effort,
as it requires ad-hoc parsing for each specific counterexample format. In that respect, we plan to
support counterexample translation from standardised error witness formats, e.g., [Beyer 2016],
which would make it possible to translate counterexamples from many program verifiers with a
unique procedure.

3 As implemented by ESBMC 6, which also infers invariants through interval analysis. As shown in Table 8, the other
implementations that we have considered (CPAchecker and 2LS) sometimes report inconclusive results on safe systems.
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Listing 4. Counterexample for the approx-b system.

1 <initialization> 18 Yes 4: agent <-- 4

2 No 0: state <- 0 19 Yes 4: message <-- 1
3 No 1: state <- @ 20 No 2: state <- 2

4 No 2: state <- 0 21 Yes 3: state <- 1

5 Yes 3: state <- 0 22 No 1: state <- 2

6 Yes 4: state <- 0 23 No 1: state <- 1

7 agent <-- -128 24 No 2: state <- 1

8 message <-- -128 25 Yes 4: agent <-- 4

9 No 0: state <- @ 26 Yes 4: message <-- 1
1 No 1: state <- 0 27 No 2: agent <-- 2
11 No 2: state <- 0 28 No 2: message <-- 1
12 Yes 3: state <- 1 29 No 0: state <- 2

13 Yes 4: state <- 1 30 No 2: agent <-- 2
14 <end initialization> 31 No 2: message <-- 1
15 No 1: agent <-- 1 32 No @: state <- 1

16 No 1: message <-- 0 33 <property violated: 'NeverYConsensus'>
17 Yes 3: state <- 2

Availability of artifacts. We generated all emulation programs by using the automated tool SLiVER
(version 1.5), which implements the mechanised translation procedure described in Section 3.
A Linux release of the tool is available online.* We have also published a persistent replication
package [Di Stefano et al. 2021] containing SLiVER, as well as the LAbS specifications, the emulation
programs, the full output produced by each verification tool for every task, and instructions to
reproduce our experiments.

5 EMULATING OTHER FORMALISMS

To further illustrate the applicability of our approach, we briefly describe another use case, namely
service choreographies. A choreography is a global description of the interactions that two or more
peers should perform in order to achieve a common goal. Interestingly, the behaviour of peers
may be synthesized from the choreography itself, by means of projection procedures. An example
is natural projection, which essentially amounts to hiding (i.e., renaming to an invisible action 7)
all those actions that the peer cannot perform. Thus, it is useful to determine whether a given
choreography is implemented by a set of synthesized peers. This is known as the problem of
realizability (under the given projection operation). The overall problem of realizability usually
implies checking some behavioural equivalence (e.g., trace equivalence) between the choreography
and the implementation, and additionally verifying that the implementation is deadlock-free. While
equivalence checking is currently out of our scope, we will demonstrate that we can already check
deadlock-freedom on choreography implementations.

5.1 Chor, a Choreography Description Language

In this work, we focus on a subset of Chor [Qiu et al. 2007], a choreography description language
with a formal syntax and semantics.> A Chor specification is composed of local actions and commu-
nications. A local action o denotes an activity that the peer x may perform asynchronously, while a
communication a*¥! denotes an action that two peers x, y must synchronise upon. Specifications

4https://github.com/labs-lang/sliver
5To maintain a uniform notation, in this work we will use 7 and + to denote Chor’s internal action and choice operator,
respectively. The original Chor syntax uses skip and M, instead.
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Listing 5. An example Chor choreography and its natural projections.

Stock 2 (iron®® + steel’);  (look® ); bid P ™K1, (sqve™ || check™");
result[bd,mk]; change”d; (notl—fy[bd,bk] +7)
BoARD £ result!® ™l change®; (notify! "% + 1)
BROKER £ (iron” + steel’); «(look"); bid! ekl (notify[bd’bk] +7)

MaRKET 2 bid!"*™]; (save™||check™); result!**™]

may also contain the invisible action 7. Smaller choreographies may be composed into larger ones
by means of operators such as choice (+), sequential composition (;), or parallel composition (||).
Additionally, Chor provides a loop operator *P that is equivalent to the (infinitely-branching) choice
7+ P+ (P;P)+ (P;P;P) +....

Chor is equipped with a trace semantics, and the problem of realizability reduces to verifying
trace equivalence between the choreography and its implementation, i.e., the parallel composition
of peers obtained through natural projection. Additionally, the implementation is required to be
deadlock-free, meaning that all peers must successfully terminate in every execution. In fact, even
though the implementation may be trace equivalent to its choreography, some executions may
leave one or more peers in a deadlocked state where they are still willing, but unable, to interact
with peers which have terminated.

5.2 Verifying Deadlock Freedom in Choreography Implementations

In general, an emulation program deadlocks if and only if it reaches a state from which no emulation
function is enabled. This, in turn, may happen if and only if the original system is not deadlock-free.
Thus, we may prove deadlock freedom by checking that the scheduler is able to invoke at least one
emulation function at every iteration.

As an example, let us consider a choreography Stock that models a metal stock market made of
three peers (the market itself, a broker, and an announcement board) [Roohi and Salaiin 2011]. The
choreography is shown in Listing 5, where we use mk, bk, and bd as shorthands for market, broker,
and board, respectively. In the choreography, the broker decides to buy either steel or metal, and
then looks until a sale becomes available. When this happens, the broker sends a bid to the market.
Upon receiving the bid, the market saves it in a database and checks whether it is higher than the
best one so far (these two action may be performed in any order). Then, it sends the result of the
check to the announcement board. Finally, the board can either change its content and notify the
broker (if their bet is now the best one), or do nothing (7).

Listing 5 also shows the behaviour of each peer, obtained through natural projection. To verify
whether MARKET||BROKER||BOARD is deadlock-free, we encode it first as a triple structure (shown
in Figure 5) and then as an emulation program. The structure of the latter resembles the one shown
in Listing 1. This time, the check() function contains an assertion that is satisfied if and only if
there is at least one enabled emulation function. Since the choreography is stateless, emulation
functions are empty and only update the program counter.

2LS is able to find a violation witness in about 4 seconds. This result confirms the finding in [Roohi
and Salaiin 2011]: namely, Board and Broker may take different branches, allowing the latter to
remain stuck on a notify communication.
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19

check™*

20}
20

0
! result!bdmk] 11112

Fig. 5. Triple structure encoding the implementation of the Stock choreography.

We also checked a safe variant of the same choreography, in which Board and Broker will
always perform notify before terminating:

STOCK-SAFE £ (iron®® + steel’); s (look®®); bid P ™K1, (save™ || check™);

bd,mk bd,bk]

result! ]; (changebd +17); notify[

This variation is deadlock-free, and indeed 2LS can successfully verify its emulation program in
about 5 seconds. As with the other experiments in this paper, these results may be reproduced by
means of our replication package [Di Stefano et al. 2021].

6 RELATED WORK

Several semantics-based verification techniques have been recently proposed. Most notably, K is an
integrated framework for semantics-based language specification, execution, and formal analysis
of programs. In principle, in K one can define syntax and operational semantics of any language,
and can automatically instantiate a reachability verifier for programs for his language [Stefanescu
et al. 2016]. Naturally, this comes at the cost of developing the full operational semantics of the
language. Moreover, K requires rewrite-based semantics rules, so it might be necessary to adapt
the existing semantics of the source language in that sense.

Our approach is also semantics-based, but focusses on quick prototyping of verification flows
for concurrent and distributed systems. We assume a predefined set of composition operators, but
no specific format for the semantics rules: one can model any semantics as long as there is a way
of doing so in the target language. The encoding of the single rules is currently done manually, but
could be mechanised by adopting a machine-tractable format for the semantics.

On the analysis side, K mainly relies on symbolic execution, and there appears to be an ongoing
effort® to translate K’s underlying specification language (Kore) into the LLVM intermediate
representation, which could allow to reuse LLVM-oriented verification tools. In contrast, our
encoding into sequential imperative languages allows to immediately inherit a large collection of

®https://github.com/kframework/llvm-backend

ACM Trans. Softw. Eng. Methodol., Vol. xx, No. yy, Article zz. Publication date: December 2021.



77:34 L. Di Stefano, R. De Nicola, and O. Inverso

analysis techniques (from traditional symbolic execution to inductive methods) and off-the-shelf
verifiers, including different LLVM-based implementations. Moreover, our encoding is a sequential
program, which allows for instance to use techniques for the analysis of sequential programs,
broadening the set of candidate verifiers even further.

Other semantics-based approaches include generation of verification conditions in the form of
Horn clauses [De Angelis et al. 2015], termination analysis [Vidal 2015], simulation [Nadales Agut
2012], or model checking through rewriting systems [Riesco 2018]. With the exception of [Riesco
2018], all the approaches mentioned above rely on a structural operational semantics (SOS) [Plotkin
1981] of the source language, like ours; however, all of them are tied to a specific analysis technique.
In contrast, our approach is modular with respect to the back end. Any verification tool can be used
as a black box, as long as it can handle the very simple syntax of our encoding (essentially just arrays
and loops), and support the standard program instrumentation primitives for non-deterministic
initialisation, assertions, and assumptions. For instance, we also used triple structures to implement
a translation [Di Stefano et al. 2020] from LAbS specifications into LNT programs [Garavel et al.
2017]. On one hand, the translation into LNT may allow to verify a larger set of properties than
simple invariance or emergence, by means of the CADP analysis toolbox [Garavel et al. 2011] and
its expressive property language. On the other hand, the symbolic C-based encoding presented
in this paper allows to immediately inherit a comprehensive range of mature and sophisticated
verification techniques developed for mainstream programming languages. Being semantics-based,
this approach may be applied to analyse different specification languages other than CCS and
LADS. For instance, one could generate emulation programs from AbC specifications [Alrahman
et al. 2020] with a procedure similar to ours, by means of an intermediate representation based on
guarded transitions [De Nicola et al. 2020b]. It is also worth to add that the emulation program
generated by our encoding is sequential, which allows to use tools that do not support concurrency.

Different languages and frameworks for the specification and analysis of distributed systems
have been put forward. CADP is oriented at concurrent value-passing systems, and can perform
explicit-state model checking of temporal properties specified in a variant of the modal p-calculus,
with support for compositional verification [Lang et al. 2019]. TLA+ [Lamport 2002] supports
checking assertion violations and verifying linear temporal properties through explicit-state model
checking [Yu et al. 1999], theorem proving [Cousineau et al. 2012], and symbolic model check-
ing [Konnov et al. 2019]. Disel [Sergey et al. 2018] aims at modular verification, i.e., verifying
individual components and exploiting these proofs when verifying a larger system. Verification
is type-based, relies on theorem proving, and is currently limited to safety properties. Similarly,
Ivy [Padon et al. 2016] allows to check safety properties through interactive theorem proving
and modular verification. Differently from Disel, Ivy can verify parameterized protocols with an
arbitrary number of participants. As both Ivy and Disel rely on theorem proving, verification is gen-
erally an interactive procedure. In our technique, the only requirement for the end user is a sufficient
familiarity with the domain-specific language, thus we deliberately target push-button verification
technology. Moreover, CADP, TLA+, Disel, and Ivy rely on their own (fixed) specification language.
Our approach is parametric with respect to the semantics of the source language.

Use of specific process algebras as a modelling tool has already been considered in the domain
of natural systems [Philippou et al. 2013; Sumpter et al. 2001], and also exploited for quantitative
verification via probabilistic model checking [Konur et al. 2010; Lomuscio and Pirovano 2018].

Sequentialization [Lal and Reps 2008; Qadeer and Rehof 2005] was originally introduced with
the goal to re-use sequential verification tools for the analysis of concurrent imperative programs.
Tailored sequentialization schemas for shared-memory concurrent programs in a C-like syntax [Fis-
cher et al. 2013; Inverso et al. 2014; Inverso and Trubiani 2020] focus on context-bounded analysis
for an efficient falsification of safety properties. In contrast, our emulation programs can analyse
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richer properties and up to an infinite number of steps. More recent approaches for message-passing
systems [Bakst et al. 2017; Bouajjani et al. 2018] adopt specific assumptions on the communications,
e.g., bounded number of outbound message, FIFO handling, etc. We do not add any such assumption
as in our approach the possible evolutions of the system are only controlled by the operational
semantics of the specification language.

MCMAS [Lomuscio et al. 2017] allows to prove properties for systems of unbounded size with
agents interacting in a shared environment, but lacks support for value-passing actions and relies
on explicit model checking. AJPF [Bordini et al. 2008] provides a toolkit to perform model-checking
on a variety of agent-oriented languages but is tied to a specific, explicit-state verification back end.

Peregrine [Blondin et al. 2018] can verify and simulate population protocols for an unbounded
number of agents. Peregrine is only concerned with verifying whether a protocol computes a
predicate  over the initial state of its population. This means that every fair execution of the
protocol stabilizes, i.e., satisfies ¢O0y’ for some appropriate predicate y’. For instance, one may verify
that the Maj protocol computes the predicate “a majority of agents has opinion Y” by checking that,
eventually, all agents reach a lasting consensus on Y. In contrast, our encoding also supports the
verification of arbitrary invariants throughout the population’s evolution. While it currently does
not allow to check a property o0y’ directly, it may be used to verify first ¢y, and then ¢’ = Oy’.’
The conjunction of these two properties implies ¢O0y’.

There is an abundance of both visual and textual choreography description languages, including
WS-CDL [W3C 2005], conversation protocols [Fu et al. 2004], and variants of the BPMN graphical
notation [OMG 2010]. These formalisms have similar expressive power to Chor and have been
formally analysed by resorting to a common intermediate representation [Glidemann et al. 2016]
or to general-purpose process algebras [Khaled and Miller 2017]. Thus, it is reasonable to expect
that our approach could be applied to them as well. Simulation is still widely used in the context of
multi-agent systems [Echeverria et al. 2012; Koenig and Howard 2004; Lachele et al. 2012; Luke
et al. 2005; Pinciroli et al. 2012; Rohmer et al. 2013] for bug-finding and quick feedback [Hrabia et al.
2018], but due the presence of concurrency and asynchrony it may only be marginally effective in
many cases [Winikoff 2010].

7 CONCLUSION

We have proposed a novel semantics-based technique that reduces property checking of distributed
systems to verification of sequential programs. An encoding procedure translates the initial system
under consideration into a sequential program, over which reachability or termination analysis
can be performed as an alternative to analysing the initial system. An intermediate representation
based on sequential programs guarantees separation of concerns between the specificities of the
source language and those of the back end verification technology. We have shown how, thanks to
our technique, different representative classes of concurrent systems described with an existing
formal specification language can be automatically verified by using mature verification tools for C
programs as black boxes. Our experimental evaluation, the fact that our approach allows automated
verification of Boids up to an unbounded number of steps, and the consistent effectiveness of
modern inductive-style methods, encourage us to continue in this direction.

In our view, our contribution is a first step towards fully mechanisable procedures to build new
push-button verification tools for domain-specific languages for distributed systems based on their
operational semantics. The approach puts the end-user of such tools at ease, as familiarity with the
source language is the only usage requirement. The methodology has a broad potential impact, as

7In general, one can always verify that / = ¢ holds in S, by verifying ¢ against some S’ which is identical to S, except
that its initial states are all the states of S which satisfy .
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it can facilitate the adoption of state-of-the-art techniques for computer-aided verification among
diverse research communities.

The generality of our technique lies in its ability to translate from any domain-specific language,
equipped with a structural operational semantics, to any imperative language with arrays and
loops. Currently, the translation procedure still requires a one-time manual effort to render the
semantics of the actions of the source language as code fragments to be expanded within the
emulation functions stubs in the target program. In general, the complexity of this manual step
depends on that of the semantic rules being translated. Basic process algebras like CCS require little
effort, while complex domain-specific languages usually need more elaborate emulation programs
to deal with advanced features, such as value-passing and asynchronous interactions like in LAbS.
In general, we could work around the need to manually write templates for emulation functions by
synthesizing them from machine-readable semantic rule formats like MSOS [Mosses 2004].

We believe that the set of composition operators we have chosen allows us to support a large
variety of source languages. However, formalisms relying on more complex compositions would be
harder to fit into our approach. Consider for instance CSP’s interrupt operator PAQ, which defines
a process that behaves like P but can be interrupted and start behaving like Q at any moment
(unless P terminates, in which case Q is discarded) [Hoare 1985]. Since our procedure is defined
by induction on the structure of processes, in order to appropriately generate triples for a process
PAQ we would need to extend our definitions of translation and enabler functions (Tables 5 and 6)
accordingly. In principle, a suitable machine-readable format to describe the triple structure of a
composite process (e.g., PAQ) in terms of those of its terms (e.g., P and Q) would allow to extend
our encoding to custom composition operators. We leave this for future work.

The current version of our encoding supports simple invariant and emergent properties, respec-
tively expressed in terms of reachability or termination of the sequential emulation program. We
are planning additional work to support a wider range of properties. We also plan to expand the
experimental evaluation to systems with a dynamic, and possibly unbounded, number of agents. To
that end, we will investigate which state-of-the-art techniques and tools can effectively deal with
programs that feature dynamic memory allocation. Alternatively, one might think of adapting
cutoff techniques developed for parameterised model checking [Kouvaros and Lomuscio 2015].

As large systems may be out of reach, we plan to complement the presented approach with
simulation-based analysis, such as statistical model checking [Legay et al. 2010]. In some cases, it
may also be possible to reduce property verification for an unbounded number of transitions to
bounded model checking by calculating completeness thresholds [Konnov et al. 2017] by inspecting
the structure of the system specifications.

Lastly, we will consider equipping our prototype with tailored back ends aimed at distributing
systems analysis over large computational clusters (e.g., by partitioning schedules as in [Inverso and
Trubiani 2020]). This would represent a very powerful instrument to gather deep insights on the
nature of complex systems. Relating such insights to the other findings from different disciplines
and possibly share them with broad scientific audiences [Ballerini et al. 2008] would be extremely
interesting.
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