
Noname manuscript No.
(will be inserted by the editor)

Language Support for Verifying Reconfigurable Interacting
Systems

Yehia Abd Alrahman · Shaun Azzopardi · Luca Di Stefano · Nir

Piterman

Received: date / Accepted: date

Abstract Reconfigurable interacting systems consist

of a set of autonomous agents, with integrated inter-

action capabilities that feature opportunistic interac-

tion. Agents seemingly reconfigure their interactions in-

terfaces by forming collectives, and interact based on

mutual interests. Finding ways to design and analyse

the behaviour of these systems is a vigorously pursued

research goal. In this article, we provide a modeling

and analysis environment for the design of such sys-

tem. Our tool offers simulation and verification to fa-

cilitate native reasoning about the domain concepts of

such systems. We present our tool named R-CHECK1.

R-CHECK supports a high-level input language with

matching enumerative and symbolic semantics, and pro-

vides a modelling convenience for features such as re-

configuration, coalition formation, self-organisation, etc.
For analysis, users can simulate the designed system

and explore arising traces. Our included model checker

permits reasoning about interaction protocols and joint

missions.

Keywords Model-checking · Agent Theories and

Models · Verification of Multi-Agent Systems

1 Introduction

Reconfigurable interacting systems [28,26], or Reconfig-

urable MAS for short, have emerged as new computa-

This work is funded by the ERC consolidator grant D-SynMA
(No. 772459) and the Swedish research council grants: SynTM
(No. 2020-03401) and VR project (No. 2020-04963).

University of Gothenburg, Gothenburg, Sweden
E-mail: {yehia.abd.alrahman,shaun.azzopardi,luca.di.stefano,
nir.piterman}@gu.se

1 Find the associated toolkit repository here: https://

github.com/dsynma/recipe.

tional systems, consisting of a set of autonomous agents

that interact based on mutual interest, and thus creat-

ing a sort of opportunistic interaction. That is, agents

seemingly reconfigure their interaction interfaces and

dynamically form groups/collectives based on run-time

changes in their execution context. Designing these sys-

tems and reasoning about their behaviour is very chal-

lenging, due to the high-level of dynamism that Re-

configurable MAS exhibit. Reconfigurable MAS can be

viewed as a special case of Collective-Adaptive Systems

(CAS) [38]. Indeed, the only major difference is that the

latter focus more on scalable systems with large number

of components. Reconfigurable MAS, instead, focus on

small scale systems with collective behaviour. Reconfig-

urable MAS are useful for applications in control sys-

tems, smart factories, autonomous vehicles, etc., while

CAS can be used to explain systems with a very large

number of (relatively small) agents. For instance, theo-

ries about CAS can be used to reason about the spread

of disease infection [34], utilisation of bike-sharing sys-

tems [32], etc. That being said, theories on Reconfig-

urable MAS focus more on qualitative measures while

CAS theories are quantitative. In this article, we focus

on qualitative analysis (through, e.g., model checking)

of reconfigurable systems.

Traditionally, model checking [16,31] is considered

as a mainstream verification tool for reactive systems [7]

in the community. A system is usually represented by a

low-level language such as NuSMV [14], reactive mod-

ules [9,25], concurrent game structures [10], or inter-

preted systems [22]. The modelling primitives of these

languages are very close to their underlying semantics,

e.g., predicate representation, transition systems, etc.

Thus, it makes it hard to model and reason about high-

level features of Reconfigurable MAS such as reconfigu-

ration, group formation, self-organisation, and similar.

https://github.com/dsynma/recipe
https://github.com/dsynma/recipe

2 Y. Abd Alrahman et al.

Indeed, encoding these features in existing formalisms

would not only make it hard to reason about them, but

will also create exponentially large and detailed mod-

els that are not amenable to verification. The latter is

a classical challenge for model checking and is often

termed as state-space explosion.

Existing techniques that attempt to tame the state-

space explosion problem (such as BDDs, abstraction,

bounded model checking, and so on) can only act as a

mitigation strategy, but cannot provide the right-level

of abstraction to compactly model and reason about

high-level features of Reconfigurable MAS.

MAS are often programmed using high-level lan-

guages that support domain-specific features of MAS

like emergent behaviour [3,37,8], interactions [5], inten-

tions [17], knowledge [22], and so forth. These descrip-

tions are very involved to be directly encoded in plain

transition systems. Thus, we often want programming

abstractions that focus on the domain concepts, ab-

stract away from low-level details, and consequently re-

duce the size of the model under consideration. The ra-

tionale is that reasoning about a system requires having

the right level of abstraction to represent its behaviour.

Thus, there is a pressing demand to extend traditional

model checking tools with support for reasoning about

high-level features of Reconfigurable MAS. This sug-

gests supporting an intuitive description of programs,

actions, protocols, reconfiguration, self-organisation, etc.

ReCiPe [6,5] is a promising framework to support

modelling and verification of reconfigurable multi-agent

system. It is supported with both an enumerative se-

mantics and a symbolic semantics and model repre-

sentation that permits the use of symbolic representa-
tion to enable efficient analysis. However, writing pro-

grams in ReCiPe is very hard and error prone. This

is because ReCiPe models are encoded in a predicate

based representation that is far from how people usu-

ally write programs. In fact, the predicate representa-

tion of ReCiPe supports no programming primitives to

control the structure of programs, and thus everything

is encoded using state variables.

In this article, we present R-CHECK, a toolkit for de-

signing, simulating, and verifying reconfigurable multi-

agent systems. R-CHECK supports a minimalistic high-

level programming language with symbolic semantics

based on the ReCiPe framework. The syntax of the lan-

guage was first presented briefly, along with a short case

study, in [2].

Here we formally present the syntax and semantics

of R-CHECK language and use it to model and rea-

son about a nontrivial case study from the realm of

reconfigurable and self-organising MAS. We integrate

ltol [5,6] - a logic specialised for interaction - into

R-CHECK, and thus allowing a native reasoning about

selective interaction strategies.

This article is an extended and an enhanced version

of the paper in [1]. There are two major new contribu-

tions with respect to [1]:

(i) we have integrated native reasoning about mes-

sage exchange by supporting ltol [6] specifications,

an extension to ltl with native support for mes-

sage exchange. We devise a new algorithm for ltol

model checking that is different from the one pre-

sented in [6] to allow integration with nuXmv. In-

deed, rather than a bespoke automata construction

in [6], we extend the underlying system with ad-

ditional information and model check an extended

ltl formula over it. This alternative algorithm is

integrated into R-CHECK; and

(ii) we also now support a native interpreter for the se-

mantics of R-CHECK models, and thus we can now

simulate and visualise the counter examples from

the model checking algorithm directly on the gener-

ated symbolic automata. In [1], we could only enable

simulation by completely relying on nuXmv, and

had no way to replay model checking counter exam-

ples. Note that the counter examples that nuXmv

supports are state-based and due to possible non-

determinism it was hard to link them to message

exchange. Our interpreter instead focuses on mes-

sage exchange.

This specialised integration provides a powerful and

native tool that permits verifying high-level features of

Reconfigurable MAS. Indeed, we can reason about sys-

tems both from an individual and a system level. We

show how to reason about synchronisations, interaction

protocols, joint missions, and how to express high-level

features such as channel mobility, reconfiguration, coali-

tion formation, self-organisation, etc.

The structure of this article: In Sect. 2, give a

background on ReCiPe [6,5], the underlying theory of

R-CHECK. In Sect. 3, we present the language of R-CHECK

and its symbolic semantics. In Sect. 4, we provide a

nontrivial case study to model autonomous resource al-

location. In Sect. 5 we present the ltol logic and mo-

tivate it through the case study. In Sect. 6 we present

our new algorithm of ltol embedding in nuXmv. We

also discuss the integration of R-CHECK on a nuXmv.

Finally, we report concluding remarks in Sect. 7.

2 ReCiPe: a model of computation

We present the underlying theory of R-CHECK and ex-

plain its semantics. R-CHECK accepts a high-level lan-

guage that is based on the symbolic ReCiPe formalism

Language Support for Verifying Reconfigurable Interacting Systems 3

[6,5]. We briefly present ReCiPe agents and their com-

position to generate a system-level behaviour. All these

definitions are based on discrete systems [36].

ReCiPe relies on (attributed-) channel communica-

tion, where agents agree on channel names to exchange

messages. These messages carry data (in variables d)

specified by senders. Agents can also specify the target

of communication by attributing the channels through

predicates, similar to [3,8]. As opposed to the latter,

ReCiPe supports a dynamic reconfiguration of chan-

nel utilisation. Moreover, ReCiPe supports two kinds of

communication, channelled-broadcast and channelled-

multicast. In channelled-broadcast, the communication

is non-blocking, that is the communication can still go

through if a targeted receiver is not ready to engage.

Contrarily, in multicast, the communication is blocking

until all targeted receivers are willing to accept the mes-

sage and engage in the communication. Agents agree on

a set of channels ch, which includes the one used ex-

clusively for broadcast, ⋆.

Usually, broadcast is used for service-discovery. For

instance, when agents are unaware of the existence of

each other, and want to be discovered or to establish

links for further interaction. On the other hand, mul-

ticast can capture a more structured interaction where

agents have dedicated links to interact on. The recon-

figuration of interaction interfaces in ReCiPe makes it

possible to integrate the two ways of communication

in a meaningful way. That is, agents may start with

a flat communication structure and use broadcast to

discover others. Thanks to ReCiPe’s channel passing

feature, agents can dynamically build dedicated com-

munication structures based on channel references they

exchange during execution.

In order to target a subset of agents, in an interac-

tion, sending agents rely on property identifiers. That

is, identifiers that senders use to specify properties re-

quired of targeted receivers. The set of property iden-

tifiers is pv. For instance, agent k may specify that it

wants to communicate on channel “a” with all agents

that listen to “a” and satisfy the property “BatteryLevel
≥ 30%”. In other words, property identifiers pv are

used by agents to indirectly specify constraints on the

targeted receivers.

Each agent has a way to relate property identi-

fiers to its local state through a re-labelling function.

As we will see later, we have generalised this function

in R-CHECK to deal with more sophisticated expres-

sions. Thus, agents specify properties anonymously us-

ing these identifiers, which are later translated to the

corresponding receiver’s local state. Messages are then

only delivered to receivers that satisfy the property af-

ter re-labelling.

Formally, an agent is defined as a Discrete System

(DS) [36]:

Definition 1 (Agent) An agent is a tuple A = ⟨V, f,
gs, gr, T s, T r, θ⟩,
• V is a finite set of typed local variables.

• f : pv → V is a function, associating propriety iden-

tifiers to local variables.

• gs(V,ch,d,pv) is a send guard specifying the prop-

erty of the targeted receivers, based on the current

evaluation of V, ch, and d , which is checked against

every receiver j after applying fj .

• gr(V,ch) is a receive guard describing the connect-

edness of an agent to a channel ch. We let gr(V, ⋆)

= true, i.e., every agent is always connected to the

broadcast channel.

• T s(V, V ′,d,ch) and T r(V, V ′,d,ch) are assertions

describing, respectively, the send and receive transi-

tion relations. We assume that an agent is broadcast

input-enabled, i.e., ∀v,d ∃v′ s.t. T r(v, v′,d, ⋆).

• θ is an assertion on V describing the initialization of

the agent.

In this definition, a state of an agent s is an assign-

ment to the agent’s local variables V, i.e., for v ∈ V

if Dom(v) is the domain of v, then s is an element in∏
v∈V Dom(v). In case that all variables range over a fi-

nite domain then the number of states is finite. A state

is initial if its assignment to V satisfies θ. Note that A

is a discrete system, and thus we use the set V ′ to de-

note the primed copy of V . That is, V ′ stores the next

assignment to V . Moreover, we use Id to denote the as-

sertion
∧

v∈V v = v′. That is, V is kept unchanged. We

use d to denote an assignment to the data variables d.

We also abuse the notation and use f for the assertion∧
pv∈pv pv = f(pv).

Agents exchange messages of the formm = (ch,d, i, π):

a message is defined by the channel it is sent on ch, the

data it carries d , the sender identity i (we assume a

unique identifier for each agent), and the assertion spec-

ifying the property of targeted receivers π. The predi-

cate π is obtained by grounding the sender’s send guard

on the sender’s current state, used channel ch, and ex-

changed data d.

Send transition relations T s characterise what mes-

sages may be sent, with one message sent at each point

in time. While receive transition relations T r charac-

terise the reaction of a receiving agent to a message.

We use keep(X) to denote that a set of variables

X is not changed by a transition (either send or re-

ceive). That is, keep(X) is equivalent to the assertion∧
x∈X x = x′.

A set of agents agreeing on property identifiers pv,

data variables d, and channels ch define a system. We

4 Y. Abd Alrahman et al.

give the semantics of systems in terms of predicates to

facilitate efficient symbolic analysis (through BDD or

SMT). We use
⊎

for disjoint union.

Formally, a ReCiPe systems is a Discrete System

(DS), and is defined as follows:

Definition 2 (System) Given a set {Ai}i of agents,

a system is S = ⟨V , ρ, θ⟩, where V =
⊎
i

Vi, a state

of the system s is in
∏

i

∏
v∈Vi

Dom(v) and the initial

assertion θ =
∧
i

θi. The transition relation ρ of S is as

follows:

ρ = ∃ch. ∃d.
∨
k

T s
k (Vk, V ′

k,d, ch)∧

∧
j ̸=k

∃pv.fj ∧


grj (Vj , ch) ∧ gsk(Vk, ch,d, pv)∧

T r
j (Vj , V ′

j ,d, ch)

∨ ¬grj (Vj , ch) ∧ Idj

∨ ¬gsk(Vk, ch,d, pv) ∧ ch = ⋆ ∧ Idj




The transition relation ρ describes two modes of in-

teractions: blocking multicast and non-blocking broad-

cast. Formally, ρ relates a system state s to its succes-

sors s′ given a message m = (ch,d, k, π). Namely, there

exists an agent k that sends a message with data d (an

assignment to d) with assertion π (an assignment to

gsk) on channel ch and all other agents are either (a)

connected to channel ch, satisfy the send predicate π,

and participate in the interaction (i.e., have a corre-

sponding receive transition for the message), (b) not

connected and idle, or (c) do not satisfy the send pred-

icate of a broadcast and idle. That is, the agents satis-

fying π (translated to their local state by the conjunct

∃pv.fj) and connected to channel ch (i.e., grj (s
j , ch))

get the message and perform a receive transition. As a

result of interaction, the state variables of the sender

and these receivers might be updated. The agents that

are not connected to the channel (i.e., ¬grj (sj , ch)) do

not participate in the interaction and stay still. In case

of broadcast, namely when sending on ⋆, agents are al-

ways connected and the set of receivers not satisfying π

(translated again as above) stay still. Thus, a blocking

multicast arises when a sender is blocked until all con-

nected agents satisfy ∃pv.fj ∧ π. The relation ensures

that, when sending on a channel different from ⋆, the

set of receivers is the full set of connected agents. On

the broadcast channel agents not satisfying the send

predicate do not block the sender.

Example: Consider a ReCiPe system that is composed

of two agents A1 and A2, agreeing on the set of channels

ch = {⋆}, the data variables d = {msg, lnk}, and the

property variables pv = {pv}. Here, we use non-boolean

variables to simplify the presentation.

A1 is defined as follows:

– V1 = {cLink :channel, role :enum}
– f1 = {pv 7→ role}
– gs1 is (ch = ⋆ ∧ pv = client)
– gr1 is true
– T s

1 is (keep(V1)∧d(msg 7→ join, lnk 7→ c) ∧ ch = ⋆)

– T r
1 is keep(V1)

– θ1 is (cLink = c ∧ role = client)

That is, A1 has two local variables cLink of channel

type and role of enumerate type. Moreover, A1 relabels

the property identifier pv locally as the value of its lo-

cal variable role. The send predicate gs1 indicates that

A1 intends to interact on the broadcast channel ⋆ with

agents that satisfy the property pv = client according

to their local relabelling. The receive predicate gr1 indi-

cates that A1 is always enabled to receive.

Behaviour-wise, A1 can send a message join with a

link c on the broadcast channel ⋆. Moreover, A1 is not

willing to receive any messages.

Initially, the local variables of A1 are set such that

cLink is assigned link c and role is a client.

A2 is defined as follows:

– V2 = {cLink :channel, role :enum}
– f2 = {pv 7→ role}
– gs2 is false
– gr2 is true
– T s

2 is false

– T r
2 is (cLink = ⊥ ∧ cLink′ = d(lnk) ∧ keep(role)∧

d(msg 7→ reserve) ∧ ch = ⋆)
– θ2 is (cLink = ⊥ ∧ role = client)

Clearly, A2 only differs from A1 with respect to the

send guard, the send transition relation (which are set
to false), the receive transition relation (which indicates

that A2 is willing to receive a message named reserve
and stores the value of lnk of the message in cLink)
and the initial condition where cLink is set to ⊥.

By applying Def. 2, we have that the composition of

A1 and A2 indeed forms a ReCiPe system (where local

variables of A1 and A2 are joined with disjoint union

to account for similar local naming).

Now starting from the initial conditions of both

agents, we apply the system transition relation ρ. Clearly,

there exist only one message that satisfies ρ, namely the

message on channel ⋆ and data variables assigned as

follows {msg 7→ join, lnk 7→ c}, where A1 is the sender

(i.e., its send transition relation T s
1 is satisfied). More-

over, there is only one receiver A2 which is connected to

⋆ (i.e., gr2 is satisfied), its receive transition relation T r
2

is satisfied with respect to the same message, and the

send guard gs1 is (ch = ⋆ ∧ pv = client) in conjunction

to local relabelling of A2 (i.e., pv = role) is satisfiable.

Thus, ρ holds and as a result A2 sets its local cLink

Language Support for Verifying Reconfigurable Interacting Systems 5

variable to c that is communicated in the message. In

the next cycle, ρ is checked again based on the new

updated states.

Clearly, ReCiPe is a low-level formalism that is geared

towards efficient BDD-representation and model-checking;

and thus is not meant to be used as a modelling lan-

guage. R-CHECK, on the other hand, builds on the ef-

ficient representation of ReCiPe and provides a set of

high-level primitives that can be used for modelling pur-

poses.

R-CHECK adopts a symbolic model checking ap-

proach that directly works on the predicate representa-

tion of ReCiPe systems. Technically speaking, the be-

haviour of each ReCiPe agent is represented by a first-

order predicate that is defined as a disjunction over the

send and the receive transition relations of that agent.

Moreover, both send and receive transition relations can

be represented by a disjunctive normal form predicate

of the form
∨
(
∧

j assertionj). That is, a disjunct of all

possible send/receive transitions enabled in each step of

a computation. In the following, we will define a high-

level language that can be used to write user-friendly

programs with symbolic computation steps. We will

also show how to translate these programs to ReCiPe

predicate representation.

3 The R-CHECK Language

We formally present the syntax of R-CHECK language

and show how to translate it to the ReCiPe predicate

representation.

An R-CHECK program starts with a prelude, re-

ported in Fig. 1, explicitly defining the communication

context: by defining the channel names (line 1); the

data variables a message carries (line 2), and defining

the property variables (line 3). Moreover the user is al-

lowed to define custom enum types (lines 4-6).

1 channels: identifier, · · ·, identifier
2 message−structure: var name:type, · · ·, var name:type
3 property−variables: var name:type, · · ·, var name:type
4 enum name {identifier, · · ·, identifier}

5
.
.
.

6 enum name {identifier, · · ·, identifier}

Fig. 1: R-CHECK script prelude.

After the communication context is defined, the user

can define the set of agents that compose the systems.

We define agents behaviour as data types.

We now introduce the agent type, its structure,

and how to instantiate it; we also introduce the syntax

of the agent behaviour and how to create a system of

agents.

1 agent name
2 local:
3 var name:type, · · ·, var name:type
4
5 init: θT
6
7 relabel:
8 predicate var <− Exp

9
.
.
.

10 predicate var <− Exp
11
12 receive−guard: gr(VT , ch)
13 repeat: P

Fig. 2: An agent type.

The type agent is reported in Fig. 2. Intuitively,

each agent type has a name that identifies a specific

type of behaviour. As we will see later, we permit creat-

ing multiple instances/copies with the same type of be-

haviour. Each agent has a local state local represented

by a set of local variables VT , each of which can be of a

type boolean, integer or enum. The initialisation of an

agent init: θT is a predicate characterising the initial

assignments to the agent local variables. The section

relabel is used to implement the relabelling function

of predicate variables in a ReCiPe agent. Here, we allow

the relabelling to include a boolean expression Exp over

local variables VT to accommodate a more expressive

relabelling mechanism, e.g., pv ← (length ≥ 20). The

section receive-guard specifies the connectedness of

the agent to channels given a current assignment to its

local variables. Syntax-wise, to specify receive guards

we use a special variable ch to denote the channel a mes-

sage was sent on at the current time step, thus we can

write ch = a to denote that an agent is always receptive

to messages sent on channel a. Moreover, an agent is

always receptive to messages on broadcast, i.e. ch = ∗ is
implicitly added as a disjunct to whatever receive guard

the user writes. The latter permits input-enabled broad-

cast as explained in Def. 1 The non-terminating be-

haviour of an agent is represented by repeat: P, which

executes the process P indefinitely.

Before we introduce the syntax of agent behaviour,

we show how to instantiate an agent and how to com-

pose the different agents to create a system.

An agent type of name A can be instantiated as

follows A(id, θ). That is, we create an instance of A

with identity id and an additional initial restriction θ.

Here, we take the conjunction of θ with the predicate θT
in the init section of the type A as the initial condition

of this instance.

6 Y. Abd Alrahman et al.

We use the parallel composition operator ∥ to induc-
tively define a system as shown in the following produc-

tion rule.

(System) S ::= A(id, θ) | S1∥S2

That is, a system is either an instance of agent type

or a parallel composition of set of instances of (possibly)

different types. The semantics of ∥ is fully captured by

ρ in Def. 2.2

The syntax of an R-CHECK process is inductively

defined as follows.

(Process) P ::= C;P | P + P | rep P | C
(Command) C ::= l : C | ⟨Φ⟩x! π d U | ⟨Φ⟩x? U

An agent behaviour corresponds to an infinite rep-

etition of a process. A process P is either a command

prefix process C;P , a non-deterministic choice between

two processes P + P , a loop rep P , or a command C.

There are three types of commands corresponding to ei-

ther a labelled command, a message-send or a message-

receive. A command of the form l : C is a syntactic

labelling and is used to allow the model checker to rea-

son about syntactic elements as we will see later.3 A

command of the form ⟨Φ⟩x! π d U corresponds to a

message-send. Intuitively, the predicate Φ is an asser-

tion over the current assignments to local variables, i.e.,

is a pre-condition that must hold before the transition

can be taken; x is a place holder (or a bound name) for

a channel name. Note that x may refer to the value of

a local variable, since we allow local variables to have

the type channels. As the names suggest π and (re-

spectively) d are the sender predicate, and the assign-

ment to data variables (i.e., the actual content of the

message). Lastly, U is the next assignment to local vari-

ables after taking the transition. We use ! to distinguish

send transitions. A command of the form ⟨Φ⟩x? U corre-

sponds to a message-receive. Differently from message-

send, Φ can also predicate on the incoming message,

i.e., the assignment d. We use ? to distinguish receive

transitions.

Despite the minimalistic syntax of R-CHECK, we

can express every control flow structure in a high-level

programming language. For instance, by combining non-

determinism and pre-conditions of commands, we can

2 Technically, in case that the relabelling uses a predicate,
we have to introduce a variable of the correct type and make
sure that every transition changing the state of the agent
updates this variable to the value of the given predicate. That
is, given the relabelling pv → Exp, add a variable pv to local
variables and the conjunct pv′ = Exp′ to all transitions.
3 This option is made redundant by the support of ltol.

However, it is left to support backward compatibility and
convenience.

encode every structure of IF-statement. Similarly, we

can encode finite loops by combining rep P and com-

mands C, e.g., (rep C1+C2) means: repeat C1 or block

until C2 happens.

We define a system by instantiating agent types and

put them in parallel, as shown bellow.

1 system = agent name(Id1, θ1) || ... || agent name(Id2, θ1)

Finally, the user can supply logical specification-

s/properties on the behaviour of the system as a set

of ltl and ltol formulas as shown below:

1 LTL ltl spec
2 · · ·
3 LTL ltl spec
4 LTOL ltol spec
5 · · ·
6 LTOL ltol spec

3.1 The semantics of R-CHECK

We initially give a structural semantics4 to R-CHECK

process using a finite automaton such that each transi-

tion in the automaton corresponds to a symbolic tran-

sition. Intuitively, the automaton represents the control

structure of an R-CHECK process. We will further use

this automaton alongside the agent definition to give

an R-CHECK agent an execution semantics based on
the symbolic ReCiPe framework. This two-step seman-

tics will help us in verifying structural properties about

R-CHECK agents.

Definition 3 (Structure automaton) A structure

automaton is of the form G = ⟨S, Σ, si, E⟩, where

– S is a finite set of states;

– si ∈ S is the initial state.;

– Σ is the alphabet of G;

– E ⊆ S ×Σ × S: is the set of edges of G.

We use (s1, σ, s2) to denote an edge e ∈ E such that

s1 is the source state of e, s2 is the target state of e and

the letter σ is the label of e.

Now, everything is in place to define the structure

semantics of R-CHECK processes. We define a function

L � M[si,sf] : P → 2E which takes an R-CHECK process

4 We use the term structural semantics instead of symbolic
because we want to stress that this semantics exposes the
control structure of a process.

Language Support for Verifying Reconfigurable Interacting Systems 7

P as input and produces the set of edges of the corre-

sponding structure automaton. The function L � M[si,sf]

returns a set of transitions corresponding to the input

process, starting from state si and (possibly) finishing

at state sf . The definition is reported below.

LP1;P2M[si,sf] ≜ LP1M[si,s1]
⋃

LP2M[s1,sf] for a fresh s1

LP1 + P2M[si,sf] ≜ LP1M[si,sf]
⋃

LP2M[si,sf]

Lrep P M[si,sf] ≜ LP M[si,si]

LCM[si,sf] ≜ {(si, C, sf)}

Given a process P appearing in the body of agent

type under repeat, we construct its corresponding struc-
ture automaton by constructing the set of edges E =

LP M[si,si], given some state si. Let S and Σ respectively

be the set of states and commands used in E. Then the

corresponding structure automaton is: ⟨S, Σ, si, E⟩.
Note that the states of the structure automaton only

represent the control structure of the process, and an

agent can have multiple initial states depending on θT
while starting from si.

We explain informally the semantics. LP1;P2M[si,sf]

is the union of the transitions created by P1 and P2

while creating a fresh state in the graph s1 to allow se-

quentiality, where P1 starts in si and ends in s1 and

later P2 continues from s1 and ends in sf . That is,

the structure of the process is encoded using an ex-

tra memory. Differently, the non-deterministic choice

LP1 + P2M[si,sf] does not require extra memory because

the execution of P1 and P2 is independent. The se-

mantics of Lrep P M[si,sf] is similar to Lrepeat : P M[si,sf]

and is introduced to allow finite looping inside a non-

terminating process. Finally, the semantics of a com-

mand in C corresponds to an edge {(si, C, sf)} in the

structure automaton. This means that the alphabet Σ

of the automaton ranges over R-CHECK commands.

Note that the translation is completely syntactic and

does not enumerate variable values, resulting in a sym-

bolic automaton.

To translate an R-CHECK agent into a ReCiPe agent,

we first introduce the following functions: typeOf, varsOf,
predOf and guardOf on a command C. That is, typeOf(C)
returns the type of a command C as either ! or ?. For ex-

ample, typeOf(⟨Φ⟩ ch ! π d U) = !. Moreover, varsOf(C)
returns the set of local variables that are updated in C,

while the predOf(C) returns the predicate characteris-

ing C in terms of local variables VT , the primed copy

V ′
T , the channel ch and the data variables d (excluding

π). For instance,

predOf(⟨Link = c⟩⋆!π(MSG := m)[Link := b])

is

(Link = c) ∧ (ch = ⋆) ∧ (MSG = m) ∧ (Link′ = b)

That is, we provide a predicate that uniquely char-

acterises the information in the command.

Finally guardOf(C) returns the send predicate π in

a send command and false otherwise.

Next we define how to construct a ReCiPe agent

from an R-CHECK agent with structure semantics in-

terpreted as a structure automaton.

Definition 4 (from R-CHECK to ReCiPe) Given

an instance of agent type T as defined in Fig. 2 with a

structure semantics interpreted as a structure automa-

ton G = ⟨S, Σ, si, E⟩, we can construct a ReCiPe

agent A = ⟨V, f, gs, gr, T s, T r, θ⟩ that implements

its behaviour.

We construct A as follows:

– V = VT ∪ {st}: the union of the set of declared

variables VT in the local section of T in Fig. 2 and

a new state variable st ranging over the states S in G

of the structure automaton, representing the control

structure of the process of T . Namely, the control

structure of the behaviour of T is now encoded as

an additional variable in A;

– T s = ∨ (
predOf(σ) ∧ (st = s1) ∧
(st′ = s2) ∧ keep(VT \varsOf(σ))

)
(s1,σ,s2)∈E : typeOf(σ)= !

– T r = ∨ (
predOf(σ) ∧ (st = s1) ∧
(st′ = s2) ∧ keep(VT \varsOf(σ))

)
(s1,σ,s2)∈E : typeOf(σ)= ?

– gs =
∨

σ∈Σ: typeOf(σ)= !

guardOf(σ)

– The initial condition θ = θT ∧ (st = si): that is the

conjunction of the initial condition θT in the init

section of T in Fig. 2 and the predicate st = si,

specifying the initial state of G;

– f and gr have one-to-one correspondence in section

relabel and section receive-guard, respectively,

of T in Fig. 2;

Namely, the structure of the R-CHECK process is

encoded as a state variable st in ReCiPe. The send tran-

sition relation is encoded as the disjunction of all edges

labeled with send commands, and similarly the receive

transition relation. The send guard is a disjunction of

all guards in send commands. Lastly, the initial con-

dition of the ReCiPe model is initialised to the initial

state of the state variable.

8 Y. Abd Alrahman et al.

4 Case Study: Autonomous resource allocation

We model a scenario where a group of clients are re-

quested to jointly solve a problem. Each client will buy

a computing virtual machine (VM) from a resource

manager and use it to solve their task. Initially, clients

know the communication link of the manager, but they

need to self-organise and coordinate the use of the link

anonymously. The manager will help establishing con-

nections between clients and available machines, and

later clients proceed interacting independently with ma-

chines on private links learnt when the connection is

established.

There are two types of machines: high performance

machines and standard ones. The resource manager com-

mits to provide high performance VMs to clients, but

when all of these machines are reserved, the clients are

assigned to standard ones. The protocol proceeds until

each client buys a machine, and then all clients have to

collaborate to solve the problem and complete the task.

To model this scenario in R-CHECK we need three

agent types: client, manager, and machine. Each type

can be instantiated multiple times, to model scenarios

of different size. We continue by defining each agent

type. We assume an enum type that identifies the role

of each agent: rolevals = {client,manager,machine}.
A client uses the local variables cLink, mLink, and

tLink of type channels, and role : rolevals to control its

behaviour, where cLink is a link to interact with the

manager, mLink is a placeholder for a mobile link that

can be learnt at run-time, tLink is a link to synchronise

with other clients to complete the task, and role is the

role of the client. A client’s initial condition θc is:

cLink = c ∧ mLink = empty ∧ tLink = t ∧ role = client

specifying that the resource manager is reachable on

c, the mobile link is empty, the task link is t and the

role is client.

Note that the interfaces of agents are parameterised

to their local states and state changes may create dy-

namic and opportunistic interactions. For instance, when

cLink is set to empty, the client does not connect to

channel c; also when a channel is assigned to mLink,
the client starts receiving messages on that channel.

In our example, clients are not aware of the existence

of each other while they share the resource manager

channel c. Thus they may coordinate to use the channel

anonymously by means of broadcast. A client reserves

the channel c by means of a broadcast message with a

predicate targeting other clients. All other clients self-

organise and disconnect from c and wait for a release

message.

A message in R-CHECK carries an assignment to a

set of data variables d. In our scenario, d = {lnk,msg}
where lnk is used to exchange a link with other agents,

and msg denotes the label of the message and takes

values from

{reserve, request, release, buy, connect, full, complete}

Agents in this scenario use one predicate variable

pv ranging over roles to specify potential receivers. Re-

member that every agent i has a relabelling function

fi : pv → Vi that is applied to the send guard once a

message is delivered to check whether it is eligible to

receive. For a client, fc(pv) = role. The send guard of a

client appears in the messages that the client sends, as

we will explain later. In general, broadcasts are destined

to agents assigning to the predicate variable pv a value

matching the role of the sender, i.e, client; messages on

cLink are destined to agents assigning mgr to pv; and
other messages are destined to everyone listening on the

right channel.

The receive guard grc is

(ch = ⋆) ∨ (ch = cLink) ∨ (ch = tLink)

That is, reception is always enabled on broadcast and

on a channel that matches the value of cLink or tLink.
Note that these guards are parameterised to local vari-

ables and thus may change at run-time, creating a dy-

namic communication structure.

1 repeat: (
2 (sReserve: <cLink==c > ∗! (pv==role)(MSG := reserve)[]
3 +
4 rReserve: <cLink==c && MSG == reserve> ∗?
5 [cLink := empty]
6)
7 ;
8 (
9 sRequest: <cLink!=empty> cLink! (pv==mgr)

10 (MSG := request)[]
11 ;
12 rConnect: <mLink==empty && MSG == connect>

cLink? [mLink := LNK]
13 ;
14 sRelease: <TRUE> ∗! (pv==role)(MSG := release)
15 [cLink := empty]
16 ;
17 sBuy: <mLink!=empty> mLink! (TRUE)(MSG := buy)
18 [mLink := empty]
19 ;
20 (
21 sSolve: <TRUE> tLink!(TRUE)(MSG := complete)[]
22 +
23 rSolve:<MSG == complete> tLink? []
24)
25 +
26 rRelease: <cLink==empty && MSG == release> ∗?
27 [cLink := c]
28)
29)

Fig. 3: Client Behaviour

Language Support for Verifying Reconfigurable Interacting Systems 9

The behaviour of the client is reported in Fig. 3.

In this example, we label each command with a name

identifying the message and its type (i.e., s for send and

r for receive). For instance, the send transition at Line

2 is labelled with sReserve while the receive transition

at Line 4 is labelled with rReserve. We use these later

to reason about agent interactions syntactically.

Initially in Lines 2−6, every client may either broad-

cast a reservemessage to all other clients (i.e., (pv = role))
or receive a reserve message from one of them. This is to

allow clients to self-organise and coordinate to use the

common link. That is, a client may initially reserve an

interaction session with the resource manager by broad-

casting a reserve message to all other clients, asking

them to disconnect the common link c (stored in their

local variable cLink); or receive a reserve message, i.e.,

gets asked by another client to disconnect from chan-

nel c. In either case, the client progress to Line 8. De-

pending on what happened in the previous step, the

client may proceed to establish a session with the re-

source manager (i.e., (pv = mgr)) and a machine (Lines

9− 25) or gets stuck waiting for a release message from

the client, currently holding the session (Lines 26−27).

In the latter case, the client gets back in the loop to

(Line 1) after receiving a release message and attempts

again to establish the session.

In the former case, the client uses the blocking mul-

ticast channel c to send a request to the resource man-

ager (Line 9) and waits to receive a private connection

link with a virtual machine agent on cLink (Line 12).

When the client receives the connect message on cLink,
the client assigns its mLink variable the value of lnk in

the message. That is, the client is now ready to com-

municate on mLink. On Line 14, the agent releases the

common link c by broadcasting a release message to all

other clients (with (pv = role)) and proceeds to Line 17

and starts communicating privately with the assigned

VM agent. The client buys a service from the VM agent

on a dedicated link stored in mLink by sending a buy to

the VM agent to complete the transaction. The client

proceeds to line 20 and wait for other clients to collabo-

rate and finish the task. Thus, the client either initiates

the last step and sends a complete message when the

rest of clients are ready (Line 21) or receives a complete
message from another client that is ready (Line 23).

We now specify the manager and the virtual ma-

chine, and show how reconfigurable multicast can be

used to cleanly model a point-to-point interaction.

The resource manager’s local variables are

hLink, sLink, cLink, role

where hLink and sLink store channel names to commu-

nicate with high- and standard-performance VMs re-

spectively and the rest are as defined before.

The initial condition θm is:

hLink = g1 ∧ sLink = g2 ∧ cLink = c ∧ role = mgr

Note that the link g1 is used to communicate with the

group of high performance machines while g2 is used

for standard ones.

The send guard for a manager is always satisfied,

(i.e., gsm is true) while the receive guard specifies that a

manager only receives on broadcast or on channels that

match with cLink or hLink, i.e., grm is

(ch = ⋆) ∨ (ch = cLink) ∨ (ch = hLink)

1 repeat: (
2 rRequest: <MSG == request> cLink? [];
3 sForward: <TRUE> hLink! (TRUE)(MSG := request)[]
4 ;
5 (
6 rConnect: <MSG == connect> cLink? []
7 +
8
9 rep (rFull: <MSG == full> hLink? [];

10 sRequest: <TRUE> sLink! (TRUE)
11 (MSG := request)[]
12)
13)
14)

Fig. 4: Manager Behaviour

The behaviour of the agent manager is reported in

Fig. 4. In summary, the manager initially forwards re-

quests received on channel c (Line 2) to the high per-

formance VMs first as in (Line 3). The negotiation pro-

tocol with machines is reported in Lines 5 − 13. The

manager can receive a connect message and directly en-

able the client to connect with the virtual machine as

in (Line 6) or receive a full message, informing that all

high performance machines are fully occupied (Line 9).

In the latter case, the requests are forwarded to the

standard performance machines on sLink as in (Lines

10−11). The process repeats until a connect message is

received (Line 6) and the manager gets back to (Line 1)

to handle other requests. Clearly, the specifications of

the manager assumes that there are plenty of standard

VMs but not a lot of high performance ones. Thus it

only expects a full message to be received on channel

hLink. Note also that the manager gets ready to handle

the next request once a connect message is received on

channel c and leaves the client and the selected VM to

interact independently.

The virtual machine’s local variables are:

gLink, pLink, cLink, asgn

10 Y. Abd Alrahman et al.

where asgn indicates if the VM is assigned, gLink is a

group link, pLink is a private link and gLink is as before;

the initial condition θvm is ¬asgn ∧ cLink = empty (note

gLink and pLink will be machine specific), where initially

virtual machines are not listening on the common link

cLink. Depending on the group that the machine belong

to, the gLink will either be assigned to high performance

machine group g1 or the standard one g2. Moreover,

each machine has a unique private link pLink. A VM’s

send guard is always satisfied, (i.e., gsmv is true) while

its receive guard (grvm) specifies that it always receives

on the broadcast channel, and also any channel held in

the variables pLink, gLink and cLink i.e., grvm is

ch = ⋆ ∨ ch = gLink ∨ ch = pLink ∨ ch = cLink.

1 repeat: (
2 rForward: <cLink==empty && MSG == request> gLink?

[cLink:= c];
3 (
4 sConnect: <cLink==c && !asgn> cLink! (TRUE)(MSG

:= connect, LNK := pLink)[cLink:= empty, asgn:= TRUE]
5 +
6 sFull: <cLink==c && asgn> gLink! (TRUE)(MSG :=

full)[cLink:= empty]
7 +
8 rConnect: <cLink==c && MSG == connect> cLink?

[cLink:= empty]
9 +

10 rFull: <cLink==c && asgn && MSG == full> gLink?
[cLink:= empty]

11)
12 +
13 rBuy: <MSG == buy> pLink? []
14)

Fig. 5: Machine Behaviour

The behaviour of the virtual machine agent is re-

ported in Fig. 5. Intuitively, a VM either receives the

forwarded request on the group channel gLink (Line 2)

and thus activating the common link and also a non-

deterministic choice between connect and full messages

(Lines 4 − 11) or receives a buy message from a client

on the private link pLink (Line 13). In the latter case,

the VM agent agrees to sell the service and stays idle.

In the former case, a VM sends connect, with its pri-

vate link pLink carried on the data variable lnk, on

on cLink if it is not assigned (Line 4), or sends full on
gLink otherwise (Line 6). Note that a full message can

only go through if all VMs in group gLink are assigned.

Note that reception on gLink is always enabled by the

receive guard grvm. Moreover, the receive transition at

Line 6 specifies that a machine enables a send on a

full message only when it is assigned. For example, if

gLink = g1 then only when all machines in group g1 are

assigned, a full message can be enabled.

Furthermore, a connectmessage will also be received

by other VMs in the group cLink (Line 8). As a re-

sult, all other available VMs (i.e., ¬asgn) in the same

group do not reply to the request. Thus, one VM is

non-deterministically selected to provide a service and

a point-to-point like interaction is achieved. Note that

this easy encoding is possible because agents change

communication interfaces dynamically by enabling and

disabling channels.

Now, we can easily create an R-CHECK system as

follows.

system = Client(client1,TRUE) ∥ Client(client2,TRUE)
∥ Client(client3,TRUE) ∥ Manager(manager,TRUE)
∥ Machine(machine1, gLink = g1 ∧ pLink = vmm1)
∥ Machine(machine2, gLink = g1 ∧ pLink = vmm2)
∥ Machine(machine3, gLink = g2 ∧ pLink = vmm3)

(1)

This system is the parallel composition (according to

Def. 2) of three copies of a client {client1, . . . , client3}; a
copy of a manager {manager}; and finally three copies of

a machine {machine1, . . . , machine3}, each belongs to a

specific group and a private link. For instance, machine1
belongs to group g1 (the high performance machines)

and has a private link named vmm1. The symbolic au-

tomata corresponding to the different agents are re-

ported in Fig. 6. There, the interaction structure and

the control flow of the different agents are exposed to

facilitate a fine-grained reasoning about interactions.

5 Model Checking of R-CHECK Systems

We present the required background on ltol, an ex-

tension of ltl with the ability to refer and therefore

reason about agents interactions. We also show how to

use ltol to reason about R-CHECK models. In the fol-

lowing sections, we show how to efficiently integrate

ltol model-checking into R-CHECK toolkit.

5.1 The ltol Specification Logic

ltol is an extension of the Linear Time Temporal logic

(ltl) with the ability to refer and therefore reason

about agents interactions. ltol majorly differs from

ltl with respect to the next operator (i.e., X). Indeed,
ltol replaces the next operator of ltl with observa-

tion descriptors that characterise the contents of the

message and the sender predicate. Namely, we distin-

guish two descriptors: possible ⟨O⟩ and necessary [O],

to refer to messages and the intended set of receivers.

The syntax of formulas φ and observation descriptors

O is as follows:

O ::= pv | ¬pv | ch | ¬ch | k | ¬k | d | ¬d | •∃O | •∀O |
O ∨O | O ∧O

φ ::= v | ¬v | φ ∨ φ | φ ∧ φ | φ U φ | φRφ | ⟨O⟩φ | [O]φ,

Language Support for Verifying Reconfigurable Interacting Systems 11

(a) Client
(b) Manager

(c) Machine

Fig. 6: Symbolic structure automata

where pv is a property identifier, ch is a channel

name (identifying the channel the current message is

sent on), k is an agent identifier (indicating the sending

agent at the current time step), and d is a data vari-

able (whose value is determined by the payload of the

current message).

We use the classic abbreviations→,↔ and the usual

definitions for true and false. We also introduce the

temporal abbreviations Fφ ≡ true U φ (eventually),

Gφ ≡ ¬F¬φ (globally) and φW ψ ≡ ψR(ψ ∨φ) (weak
until). Furthermore the semantics assumes that all vari-

ables mentioned in the specification are Boolean. Note

that every finite domain can be encoded by multiple

Boolean variables. R-CHECK, however, supports con-

straints over non-Boolean variables, including variables

with infinite domain (e.g., integers) as part of the LTOL

syntax.

The syntax of ltol is presented in positive nor-

mal form to avoid unnecessary blowup during model

checking. That is, we push the negation down to atomic
propositions.

Observation descriptors are built from referring to

the different parts of the message and their Boolean

combinations. Thus, they refer to the channel in ch,

the data variables in d, the sender k, and the sender

predicate over predicate variables in pv. These pred-

icates are interpreted as sets of possible assignments

to property identifiers, and therefore we include exis-

tential •∃O and universal •∀O quantifiers over these

assignments.

The semantics of a descriptor O is defined for a

ReCiPe message m = (ch, d, k, π). Recall π identifies

the set of receivers the sender wishes the message to

reach, by identifying the assignments to property iden-

tifiers pv that a receiver is allowed to have. Given an

assignment c and a variable pv ∈ pv we write c ⊨ pv if c

assigns pv to true and c ̸⊨ pv otherwise. The semantics

is defined as follows:

m ⊨ ch′ iff ch = ch′ m ⊨ ¬ch′ iff ch ̸= ch′

m ⊨ d′ iff d(d′) m ⊨ ¬d′ iff ¬d(d′)
m ⊨ k′ iff k = k′ m ⊨ ¬k′ iff k ̸= k′

m ⊨ pv iff for every assignment c ⊨ π we have c ⊨ pv
m ⊨ ¬pv iff there is an assignment c ⊨ π such that c ̸⊨ pv
m ⊨ •∃O iff there is an assignment c ⊨ π such that

(ch, d, k, {c}) ⊨ O
m ⊨ •∀O iff for every assignment c ⊨ π it holds that

(ch, d, k, {c}) ⊨ O
m ⊨ O1 ∨O2 iff either m ⊨ O1 or m ⊨ O2

m ⊨ O1 ∧O2 iff m ⊨ O1 and m ⊨ O2

We only comment on the semantics of the descrip-

tors •∃O and •∀O as the rest are standard proposi-

tional formulas. The descriptor •∃O requires that at

least one assignment c to the property identifiers in

the sender predicate π satisfies O. Dually •∀O requires

that all assignments in π satisfy O. Using the former,

we express properties where we require that the sender
predicate has a possibility to satisfy O while using the

latter we express properties where the sender predi-

cate can only satisfy O. For instance, both observations

(ch,d, k, pv1 ∨ ¬pv2) and (ch,d, k, pv1) satisfy •∃pv1 while
only the latter satisfies •∀pv1. Furthermore, the obser-

vation descriptor •∀false ∧ ch = ⋆ says that a message

is sent on the broadcast channel with a false predicate.

That is, the message cannot be received by other agents.

In our example in Sect. 4, the descriptor •∃(pv = client)∧
•∀(pv = client) says that the message is intended ex-

actly for agents of client role.

We interpret ltol formulas over system computa-

tions:

Definition 5 (System computation) A system com-

putation ρ is a function from natural numbers N to

2V ×M where V is the set of state variable proposi-

tions andM = ch×2d×K×22pv is the set of possible

observations. That is, ρ includes values for the variables

in 2V and a message in M at each time instant.

12 Y. Abd Alrahman et al.

We denote by si the system state (i.e., an assign-

ment to system variables) at the i-th time point of the

system computation. Moreover, we denote the suffix of

ρ starting with the i-th state by ρ≥i and we use mi to

denote the message (ch,d, k, π) in ρ at time point i.

The semantics of an ltol formula φ is defined for

a computation ρ at a time point i as follows:

ρ≥i ⊨ v iff si ⊨ v and ρ≥i ⊨ ¬v iff si ̸⊨ v;
ρ≥i ⊨ φ2 ∨ φ2 iff ρ≥i ⊨ φ1 or ρ≥i ⊨ φ2;

ρ≥i ⊨ φ2 ∧ φ2 iff ρ≥i ⊨ φ1 and ρ≥i ⊨ φ2;

ρ≥i ⊨ φ1 U φ2 iff there exists j ≥ i s.t. ρ≥j ⊨ φ2 and,

for every i ≤ k < j, ρ≥k ⊨ φ1;

ρ≥i ⊨ φ1 Rφ2 iff for every j ≥ i either ρ≥j ⊨ φ2 or,

there exists i ≤ k < j, ρ≥k ⊨ φ1;

ρ≥i ⊨ ⟨O⟩φ iff mi ⊨ O and ρ≥i+1 ⊨ φ;
ρ≥i ⊨ [O]φ iff mi ⊨ O implies ρ≥i+1 ⊨ φ.

Intuitively, the temporal formula ⟨O⟩φ is satisfied on

the computation ρ at point i if the message mi satisfies

O and φ is satisfied on the suffix computation ρ≥i+1.

On the other hand, the formula [O]φ is satisfied on the

computation ρ at point i ifmi satisfying O implies that

φ is satisfied on the suffix computation ρ≥i+1. Other

formulas are interpreted exactly as in ltl.

With observation descriptors we can refer to the in-

tention of agents in the interaction. Consider the fol-

lowing formula:∨
k∈Client

F⟨sender = k ∧ •∃(pv = mgr) ∧MSG = request⟩true

The formula states that eventually a client k will

communicate with the resource manager mgr using a

request message. Note that we not only specify the mes-

sage contents in ltol, but also we can predicate on

the targeted receivers. Expressing this formula in ltl,

which was the only specification language supported in

the conference version [1] of this article, is only possi-

ble by including (manually) additional instrumentation

in the system. Thus, we integrate ltol model checking

into R-CHECK. Here, we would like to use existing im-

plementations of ltl model checking rather than the

bespoke ltol model checking algorithm in [6]. The al-

gorithm here, replaces the large alphabet required in [6]

by extending the model with observation variables (to

be explained below) and creating a modified ltl for-

mula relating to them. Thus, we reduce ltol model

checking to ltl model checking over a model that is ex-

tended with additional variables. The details are given

in Section 6.2.

Practically, the implementation of the latter algo-

rithm is done through an encoding into the nuXmv

model checker [15]. First, we transform an R-CHECK

model into a symbolic ReCiPe model, encode it as an

nuXmvmodule, and later we rely on the symbolic model

checking algorithms of nuXmv to reason about R-CHECK.

5.2 ltol Showcasing

We will use Eq. 1, Sect. 4 and the corresponding struc-

ture automata in Fig. 6 as the system under consider-

ation.

We show how to verify ltol properties about agents

both from individual and interaction protocols level by

predicating on message exchange rather than on atomic

propositions. Unlike the conference version, we will use

formulas that natively characterise interactions and the

different coordination mechanisms. For instance, we can

reason about a client and its connection to the system

as follows.

G([sender = client1 ∧MSG = reserve]
F ⟨sender = client1 ∧MSG = request⟩true) (1)

G([sender = client1 ∧MSG = reserve]
F ⟨sender = client1 ∧MSG = release⟩true) (2)

G([sender = client1 ∧MSG = request]
F ⟨MSG = connect⟩client1−mLink ̸= empty) (3)

The liveness condition (1) specifies that after a client

reserves the common link they send a request to the

manager c; the liveness condition (2) specifies that the

client does not hold a live lock on the common link c.
Namely, the client releases the common link eventually.

The liveness condition (3) specifies that the system is

responsive, i.e., after the client’s request, other agents

collaborate to eventually supply a connection.

We can also reason about synchronisation and re-

configuration in relation to local state as follows.

G([sender = manager ∧MSG = request] ∨
k∈Machine

k−cLink=c) (4)

∧
k∈Machine

G (!k−asgn −→ F⟨sender = k ∧MSG = connect⟩true (5)

In (4), the manager has to forward the request be-

fore a machine can get connected to the common link.

That is, a machine reconfigures its interaction interface

and starts listening to link c. Moreover, in (5) every

machine that is not assigned must eventually supply a

connection.

We can also specify channel mobility and joint mis-

sions from a declarative and centralised point of view,

Language Support for Verifying Reconfigurable Interacting Systems 13

as follows.∨
k∈Client

F

(
⟨sender = k ∧MSG = complete⟩true ∧

∧
j̸=k∈Client

[sender ̸= j ∧MSG = complete]j−rSolve
)
∧∧

k∈Client

F k−mLink ̸= empty

That is, eventually one client will initiate the mission’s

termination by synchronising with the others to solve

the joint problem. Notice that the quantified sub for-

mula over clients (in the second line) that are not senders

ensures that they must participate and supply a receive

transition (i.e., j−rSolve, see Fig. 3, Line 23). More-

over, each client eventually receives a mobile link (i.e.,

k-mLink ̸= empty).

This is interesting because we can zoom in and spec-

ify senders and receivers natively. Indeed, this level of

reasoning is impossible to achieve while considering only

the states of the system. We must be able to refer to

contents of messages as allowed by ltol. The full tool

support and all examples in this paper are available on

the git repository.

In the following, we show how to integrate ltol into

R-CHECK.

6 LTL & LTOL Model-Checking and

Simulation

We show how to model check both ltl and ltol [5,6]

through nuXmv. With nuXmv, we can support BDD-

based symbolic model checking (with finite-state-space)

or IC3 and bounded model checking BMC (with infinite-
state-space). Moreover, we present a new native fron-

tend and interpreter for R-CHECK and showcase it.

6.1 Integrating ltl Model Checking into R-CHECK

We give individual R-CHECK agents a symbolic seman-

tics based on the ReCiPe framework as shown in Sect. 3.1

and Def. 4. Notably, we preserve the labels of commands

(i.e., l : σ) and use them as subpredicate definitions. For

instance, given a labeled edge (s1, l : σ, s2) in the struc-

ture automaton G in Def. 3, we translate it into the

following predicate in ReCiPe as explained in Def. 4:

l := predOf(σ)∧(st = s1)∧(st′ = s2)∧keep(VT \varsOf(σ))

The only difference here is that the label l is now

a predicate definition and its truth value defines if the

transition (s1, l : σ, s2) is feasible. Since every command

is translated to either message-send or message-receive,

we can use these labels now to syntactically refer to

code reachability. That is, we can directly specify if a

line of code is reachable.

Moreover, we rename all local variables of agents

to consider the identity of the agent as follows: for ex-

ample, given the cLink variable of a client, we gener-

ate the variable client−cLink. This is important when

different agents use the same identifier for local vari-

ables. We also treat all data variables d and channel

names ch as constants and we construct a ReCiPe sys-

tem S = ⟨V , ρ, θ⟩ as defined in Def. 2 while consid-

ering subpredicate definitions and agent variables after

renaming. Technically, a ReCiPe system S has a one-to-

one correspondence to a nuXmv module M . That is,

both S and M agrees on local variables V and the ini-

tial condition θ, but are slightly different with respect

to transition relations. For efficiency, the composition

of agents to a system, discards the information about

messages. Thus, we do not add variables that capture

these details and rely on correct conjunction of transi-

tion disjuncts to capture the existence of an appropriate

message. Finally, the transition relation ρ of S as de-

fined in Def. 2 is translated to an equivalent transition

relation ρ̂ of M as follows:

ρ̂ = ρ ∨ (¬ρ ∧ keep(V))

That is, nuXmv translates deadlock states in S into

stuttering (sink) states inM where system variables do

not change.

Note that the above mentioned translation to nuXmv

unlocks the native model simulator and ltlmodel checker

of nuXmv. As messages are not encoded directly in the

model, only basic reasoning about message exchange

using labelled commands is possible. As shown in the

early version [1] of this article, one can use such labels

to reason about interactions as follows:

G (client1−sRequest −→ F client1−rConnect)

This formula can be used in our example to spec-

ify that after the client’s request eventually a machine

supplies a connection. Although this formula is correct

in our example, it is not strong enough to indicate that

a request message is actually happening. It can only

indicate that a request message is enabled. This is be-

cause the label sRequest only indicates if a line of code

is reachable and feasible, but does not tell if it is exe-

cuted. One needs a more expressive language to express

the actual exchange of messages. For instance, this is

straightforward in the following ltol formula:

φ ≜ G([sender = client1 ∧MSG = request]
F ⟨MSG = connect⟩client1−mLink ̸= empty) (1)

14 Y. Abd Alrahman et al.

Clearly, formula (1) natively expresses that it is al-

ways the case that if a client sends a request message,

it will eventually receive a connection where its mobile

linkmLink is assigned. However, to allow such high-level

verification of message exchange, we need to integrate

ltol model checking into R-CHECK.

6.2 Integrating ltol Model Checking into R-CHECK

We provide a new algorithm for model checking ltol.

The original algorithm [6] constructed directly a corre-

sponding automaton from an ltol specification. Fur-

thermore, during model checking additional satisfiabil-

ity checks of individual steps were required. Here, to re-

use existing state-of-the-art tools, we instead augment

our system model to be able to project ltol model

checking onto ltl model checking. Note that this is

not equivalent to an encoding of ltol into ltl. Such

encoding does not actually exist, and this is why our al-

gorithm requires augmenting the model with new vari-

ables.

Our algorithm exploits the original insights of the

algorithm for ltol model checking [6]. Namely, to con-

centrate on checking messages against top-level obser-

vations, appearing in the ltol formula.

A core difficulty in the present algorithm is that

the observation descriptors O that appear in ltol for-

mulas are not (completely) part of R-CHECK models.

Therefore, we need a way to embed them efficiently

in R-CHECK models and use this embedding to reason

about interactions through nuXmv. To do so, we intro-

duce a variable obsi for each descriptor that appears in

the ltol formula, embed obsi into the nuXmv encod-

ing of R-CHECK model, and later use an extended ltl

formula to reason about it. We stress that the embed-

ding of obsi into the nuXmv encoding ensures that the

value of obsi reflects the truth value of the observation

after each transition.

Formally, let obs(φ) be the set of observations ap-

pearing “top-level” in the operators ⟨·⟩ and [·] in φ.

More precisely, obs(φ) is closed under the subformula

relation of φ, but is not closed under the subformula

relation of O. Consider φ in Formula 1:

obs(φ) = {sender = client1 ∧MSG = request,
MSG = connect}

We denote by |obs(φ)| the size of the set obs(φ). Thus,
for a formula φ over an R-CHECK system Sys, we cre-

ate a modified system Sys′ by introducing |obs(φ)|-new
variables (one for each descriptor) to the system. These

variables can be used to record the changes of truth

values to the different observation descriptors. We set

the initial condition θ′ of the modified system Sys′ to

the conjunction of the initial condition θ of the original

system Sys and a false assignment to all these new de-

scriptor variables, to mean that no messages have been

exchanged initially.

Recall that the predicate semantics of an R-CHECK

system is of the form
∨

i(
∧

j cmdj), where each con-

junct in the disjunction represent a message send com-

mand in T s
i conjuncted with reactions of receivers in

T r
j with respect to grj , while evaluating the send pred-

icate gsi on each receiver state. This means that it is

sufficient to set the new descriptor variables after the

execution of each conjunct to specify which message is

executed. In what follows, we abuse the notations and

use T s
i to denote the set of send transitions of agent i

and τsi to denote a single send transition of agent i.

In other words, for each conjunct (
∧

j cmdk) in the

system semantics, we conjunct it with the truth value

of each descriptor in the next state. Namely, the latter

conjunct is transformed into:

(
∧
j

cmdj) ∧
∧
k

(obs′k = embed(Ok, τ
s
j)) (2)

That is, every time a message is emitted, we as-

sign each obsk with its truth value in the next state

(hence we use the prime copy obs′k) through an embed-

ding function. The latter takes the descriptor Ok for

sender k and the send transition τsj as parameters. The

definition of the embed function is shown below.

The rationale is that each transition at system level

is a send transition, which is originated by a single

sender. Thus, every time is a message is emitted, we set

the truth values of all observation descriptors. We em-
bed the observations for each send transition τsk ∈ T s

k of

agent k. The embedding function is defined as follows:

Definition 6 (Observation embedding) We define

an embedding function embed(Ok, τ
s
j) that takes an

observation Ok and a send transition τsj of agent j,

rewrites the observation to a formula with respect to

τsj and the send predicate gsj of agent j. We use c to

denote an assignment to property identifiers in pv and

f [c] to denote a grounding of formula f on c:

embed(k, τ sj) ≜ k = j

embed(ch, τsj) ≜ ch = ch(τsj)

embed(d, τsj) ≜ d = dτs
j
(d)

embed(pv, τsj) ≜ pv

embed(¬O, τ sj) ≜ ¬embed(O, τ sj)

embed(•∃O, τ sj) ≜
∨

c∈pv(gs[c] ∧ embed(O, τ sj)[c])

embed(•∀O, τ sj) ≜
∧

c∈pv(gs[c]→ embed(O, τ sj)[c])

embed(O1 ∧O2, τ
s
j) ≜ embed(O1, τ

s
j) ∧ embed(O2, τ

s
j)

embed(O1 ∨O2, τ
s
j) ≜ embed(O1, τ

s
j) ∨ embed(O2, τ

s
j)

Language Support for Verifying Reconfigurable Interacting Systems 15

Namely, we rewrite the observation in relation to the

current executed send command and the sender pred-

icate. We require that ltol formulas are written in a

normal form where pvs do not appear outside quan-

tifiers, and there is no nesting of quantifiers. This is

important to handle quantified formulas correctly.

Now, everything is in place to translate ltol de-

scriptor formulas into ltl as follows:

J⟨O⟩φK ≜ X(obsO ∧ JφK)
J[O]φK ≜ X(obsO → JφK)

(3)

Intuitively, the translation faithfully follows the trace

semantics of descriptor formulas as explained in Sect. 5.1.

Note that the resulting ltl formula is linear in size with

respect to the ltol one. Here, we consider the size of an

ltol formula with respect to top-level observations as

in [6], and thus we consider an observation alphabet in

2|obs(φ)|. Since we eventually employ ltl model check-

ing on the modified model and formula, it is clear that

the model checking problem is still in pspace. How-

ever, the size of the model is dependent on the extra

variables added to account for top-level observations

|obs(φ)|. More precisely we have the following:

Theorem 1 (Model-Checking) The Model-Checking

problem of an ltl formula φ′ translated from an ltol

formula φ is pspace-complete with respect to the size of

the original ltol formula |φ| and the size of the mod-

ified system |Sys| × |obs(φ)|, where |Sys| is the (sym-

bolic) size of the original system.

Note that the stated bound in terms of |Sys| ×
|obs(φ)| instead of logspace is because R-CHECK sys-

tems are symbolic. Indeed, logspace complexity is achieved

for enumerative representation, which is anyway expo-

nentially larger.

Clearly, the size of the resulting ltl formula (which

is linear compared to ltol) does not play a role in the

asymptotic complexity. The only major difference is due

to the enriched system model. Since the number of top-

level observations in the formula |obs(φ)| impacts on

the size of the model, one could mitigate the blowup by

model-checking individual formulas, and thus building

smaller enriched system models for each LTOL formula.

Theorem 2 (Correctness) Given a ReCiPe system

Sys and an ltol formula φ, we have that:

Sys ⊨ φ if and only if Sys′ ⊨ φ′

where Sys′ is an enriched system model according to

Eq. 2 and Def. 6 and φ′ is an ltl formula translated

from φ according to Eq. 3.

Proof We have two directions. We prove the Only if
direction (⇐) and the if (⇒) direction follows in a

similar way. Moreover, we restrict our attention to

base and descriptor formulas. Note that the trans-

lation of other formulas is the identity function.

(⇐) Assume Sys ⊨ φ and prove Sys′ ⊨ φ′:

For a ReCiPe system Sys, a computation is of the

form σ : (s0,m0)(s1,m1) . . . , where s0 is an ini-

tial state, si ∈ 2V and mi ∈ M (see Def. 5). An

R-CHECK system computation, on the other hand,

is of the form σ′ : s0, s1, . . . where information about

messages (mi) is dropped after composition to pro-

duce a nuXmv module. Our algorithm aims at en-

riching the states of a computation when needed to

allow reasoning about message exchange.

We know that Sys ⊨ φ iff for every computation σ in

Sys, we have that σ ⊨ φ. Now consider an arbitrary

ReCiPe computation σ : (s0,m0)(s1,m1) . . . of Sys,

and consider the following cases for φ:

– Consider a state formula (v): a state formula

does not contain observation descriptors, and thus

|obs(v)| = 0. In other words, both the system

Sys and the formula φ are not changed by our

algorithm, and thus this case holds easily (state

information are sufficient to prove φ).

– Consider a descriptor formula (⟨O⟩φ):
By semantics of ltol, we have that

σ≥i ⊨ ⟨O⟩φ iff mi ⊨ O and σ≥i+1 ⊨ φ

By our algorithm in Sect. 6.2, |obs(⟨O⟩φ)| = 1

(i.e., there is only 1 top-level observation O), and
thus we introduce a new state variable obsO that

stores the satisfiability of O with respect to a

previous taken transition (see Eq. 2).

The modified R-CHECK system Sys′ has compu-

tations of the form σ′ : (s0, o0)(s1, o1) . . . , where

oi ∈ 2obsO for i ≥ 0 and o0 = ∅ (no messages

have been exchanged earlier). Note that oi in a

computation (except for o0) evaluates to true iff

the predicate embed(O, τ sk) is satisfiable for the

previously executed send command τsk of some

sender k (recall that the embed is assigned as

the next assignment to obsO (i.e., obs′O)).

By easy inspection, it is not hard to see that

the semantics of mi ⊨ O is actually equivalent

to the satisfiability of the predicate returned by

embed(O, τ sk) (or the value of obs′O). In other

words, mi ⊨ O implies oi+1 is true.

16 Y. Abd Alrahman et al.

Now, φ′ ≜ X(obsO ∧ JφK). Thus, for a modified

R-CHECK computation σ′ : (s0, o0)(s1, o1) . . . ,

we have that σ′
≥i ⊨ X(obsO ∧φ) iff σ′

≥i+1 ⊨ obsO
and σ′

≥i+1 ⊨ JφK.

σ′
≥i+1 ⊨ obsO iff obsO is satisfiable and this is

implied by mi ⊨ O.

σ′
≥i+1 ⊨ JφK follows by σ≥i+1 ⊨ φ and the induc-

tion hypothesis.

– Consider a descriptor formula ([O]φ): This case is

similar to the previous one.

Simulation. R-CHECK provides an interactive inter-

preter (or simulator) that allows the user to simulate

the system either randomly or based on the user choice.

The simulator can also backtrack from a specific state

of the system. The latter feature is used to simulate the

counter examples from the model checking algorithm.

Unlike the nuXmv simulator used in the conference

version [1] of this article, the current interpreter is de-

veloped based on the interaction semantics of ReCiPe,

and thus allows to simulate the interactions and pro-

vides better understanding of the scenario under con-

sideration.

Note that in R-CHECK, we limit ltol specifications

to only refer to property identifiers of finite-domains

(e.g., boolean variables, channels, enums, and bounded

integers). This important because the definition of embed
requires, for certain cases, existential (e.g. for •∃) or

universal (for •∀) quantification over the possible as-

signments to pv; and thus we may need to enumerate

all such assignments.

6.3 The R-CHECK Frontend and Interpreter

R-CHECK is implemented in a prototype tool, which

can either be invoked from a command line or a user-

friendly web interface (with graphical illustrations).

The web interface (e.g., Fig. 7 below) provides a rich

text area and support for model-checking or simulation.

The text area permits writing high-level syntax cor-

responding to the language of R-CHECK, providing syn-

tax colouring and highlighting to improve readability.

The user can build the model by either compiling to

an SMT model (with infinite-state space) or to a plain

BDD (with finite-state space) by hitting the Build model
button. When the model is ready, the user will also be

presented with a representation of the agents in the sys-

tem as symbolic automata, shown in the lower part of

the interface (See Fig. 7).

For model checking purposes, the user can use dif-

ferent options, depending on the model type. Currently,

we support BDD-based symbolic model checking (which

is Model-Checking (MC) that requires a BDD model),

IC3 and Bounded Model Checking (BMC) (which re-

quire an SMT model). When either IC3 or BMC is se-

lected, a text field appears where a verification bound

can be specified; this is optional for IC3 and mandatory

for BMC.

The user writes all specifications at the bottom of

the text area, and each specification should be prefixed

by the keyword SPEC. Once the model checking proce-

dure is over, the user gets a report with the verification

outcome for each specification.

The interpreter tab allows the user to interactively

explore the system’s executions. We set up the inter-

preter by hitting the Start button. When this happens,

the initial state is computed,5 a dropdown gets popu-

lated with all available transitions, and the Start but-

ton itself is replaced by a Next button. Then, the user

makes the system evolve by choosing a transition from

the dropdown and hitting Next. The Back button al-

lows instead to undo the latest transition and go back

to the previous step. The interpreter can be restarted

completely by hitting Reset. Additionally, whenever a

verification task (in the Model Checking tab) finds a

counter example, the user will be given the option to

load it into the interpreter.

Let us now consider the R-CHECK example of Sec-

tion 4, and show how to use the Web frontend to model-

check the following specifications against it:

∨
k∈Client

F⟨sender = k ∧MSG = complete⟩true ∧ (1)∧
k∈Client

F k−mLink ̸= empty

G(⟨sender = manager ∧MSG = request⟩true →∧
k∈Machine

[sender = manager]k−cLink=c) (2)

We expect property (1) to hold, and (2) to be vio-

lated. Informally, (1) states that eventually one client

will initiate the mission’s termination. Moreover, each

client eventually receives a mobile link; (2), on the other

hand, states that once the manager forwarded the re-

quest, all machines will get connected to the common

link.

Fig. 8a below depicts the outcome of the IC3 model

checker. As we can see, the tool allows us to load the

counter example for the second property into the in-

terpreter. When we do that (see Fig. 8b) below, we

5 To better handle systems with nondeterminism in the ini-
tial state, we plan to add an input field where the user can
specify initial constraints.

Language Support for Verifying Reconfigurable Interacting Systems 17

Fig. 7: The R-CHECK Web-based interface, after building a model.

can easily see that after the manager sends a request

message from state 2, only machine1 and machine2 get

connected to link c. This is not the case for machine3,
and thus violating property 2.

7 Concluding Remarks

We introduced the R-CHECK model checking toolkit for

verifying and simulating reconfigurable multi-agent sys-

tem. We formally presented the syntax and semantics

of R-CHECK language in relation to the ReCiPe frame-

work [6,5], and we used it to model and reason about a

nontrivial case study from the realm of reconfigurable

and self-organising MAS. Our semantics approach con-

sisted of two types of semantics: structural semantics

in terms of automata to recover information about in-

teraction features, and execution semantics based on

ReCiPe. The interaction information recovered in the

structural semantics is recorded succinctly in the ex-

ecution one, and thus permits reasoning about inter-

action protocols and message exchange. R-CHECK is

supported with a command line tool, a web editor with

syntax highlighting and visualisation.

We integrated ltol [5,6] model checking into

R-CHECK, and thus allowing a native reasoning about

selective interaction strategies. The integration consisted

of providing a dynamic embedding of ltol descriptor

formulas into the model under consideration. We built

R-CHECK based on a compilation to nuXmv to en-

able both ltol and ltl verification through symbolic,

bounded, and IC3 model checking. We showed that this

specialised integration provides a powerful tool that

permits verifying high-level features such as synchro-

nisations, interaction protocols, joint missions, channel

mobility, reconfiguration, self-organisation, etc.

As mentioned, our work is focused on multi-agent

systems, which is a special case of collective adaptive

systems. The difference here is that the number of agents

is usually small, and thus the issue of scalability is not

our main concern. Indeed, if we consider a large number

of agents then qualitative reasoning with ltol would

not be sufficient and probabilistic techniques, like sta-

tistical model checking [30], would be more appropriate.

Related works. We report on closely related model-

checking toolkits.

18 Y. Abd Alrahman et al.

(a) Model checker tab with verification outcome.

(b) Interpreter with a counter example to a violated specification.

Fig. 8: Using R-CHECK to analyze the system of Sect. 4.

MCMAS [31] is a successful model checker that is

used to reason about multi-agent systems and supports

a range of temporal and epistemic logic operators. It

also supports ISPL, a high-level input language with

semantics based on Interpreted Systems [22]. The key

differences with respect to R-CHECK are: (1) MCMAS

models are enumerative and are exponentially larger

than R-CHECK ones; (2) actions in MCMAS are merely

synchronisation labels while command labels in R-CHECK

are predicates with truth values changing dynamically

at run-time, introducing opportunistic interaction; (3)

lastly and most importantly R-CHECK can model and

reason about dynamic communication structure with

message exchange and channel mobility while in MC-

MAS the structure is fixed.

MTSA toolkit [21] is used to reason about labelled

transition systems (LTS) and their composition as in

the simple multiway synchronisation of Hoare’s CSP

Language Support for Verifying Reconfigurable Interacting Systems 19

calculus [27]. MTSA uses Fluent Linear Temporal logic

(fltl) [24] to reason about actions, where a fluent is

a predicate indicating the beginning and the end of

an action. As the case of MCMAS, the communication

structure is fixed and there is no way to reason about

reconfiguration or even message exchange.

A few other languages have been proposed that en-

tirely drop channel-based interaction, letting agents se-

lect their interaction partners through attribute-based

predicates. Here we only report on those languages with

an associated verification platform. In SCEL [19], each

agent (or process) has an associated tuple space and in-

teraction happens by attribute-based insertion, lookup,

or deletion of tuples. This makes the interaction mech-

anism somehow asynchronous, in the sense that (i)

the insertion of a tuple cannot be blocked, and (ii)

there is no guarantee that a tuple insertion modelling

a service request will elicit a response within any time

bound. While SCEL is arguably a more dynamic lan-

guage than R-CHECK, featuring dynamic instantiation

of names and processes as well as higher-order commu-

nication (i.e., exchanging processes by storing them in

tuples), its verification capabilities are based on the sta-

tistical model checking [35]. This is due to the fact that

SCEL’s models have typically infinite-state-space both

behaviourally (dynamic creation of processes) and do-

main wise (use infinite-domain state variables). Thus,

statistical reasoning fits more with SCEL.

AbC [3,8] instead provides attribute-based multi-

way synchronisation as the core interaction primitive.

AbC specifications may be verified through symbolic

bounded model checking (BMC) [18]. This approach

seems limited to verification of safety property and ap-

pears to be better suited for bug-finding than for live-

ness and fairness properties, since completeness of BMC

depends on choosing an appropriate verification bound.

Compared to SCEL and AbC , R-CHECK offers channel-

based communication that may be further specialised

through predicates over properties. These, in turn, bear

a loose resemblance to attributes. Properties appear

to be more flexible and to better support encapsula-

tion: the value of a property is the result of an arbi-

trary expression over the state of agents, whereas at-

tributes either coincide (AbC) or directly map to in-

ternal variables (SCEL). At the same time, proper-

ties are not essential to the Reconfigurable MAS as-

pects of R-CHECK. For instance, agents may still block

each other over multicast channels even without send

guards.

Other frameworks that deal with dynamic reconfig-

uration include DREAM [20] and BIP [11]. In the for-

mer, components (agents) live within motifs that also

dictate rules for components to interact with each other

or migrate towards another motif. In the latter, be-

haviour and interactions are logically distinct layers.

The behavioural layer only specifies how a component

communicates over a set of ports; the interaction layer,

in turn, specifies connectors that model links and modes

of synchronisation between ports. This modelling style

is known as exogenous, as opposed to the endogenous

style where coordination primitives are part of the com-

ponents’ behaviour. Proponents of exogenous modelling

argue that it enables to abstract formal analysis of the

coordination model away from the behavioural layer.

ReCiPe applies instead an endogenous approach: our ra-

tionale is that not having to specify global coordination

rules simplifies modelling, and that the lack of a clear

separation of layers is effectively mitigated by appro-

priate logical formalisms (LTOL) and state-of-the-art

verification techniques (IC3).

Moreover, R-CHECK is uniquely distinguished from

existing formalisms whether they are attribute-based

such AbC or connector-based such as static BIP [12]

due to run-time reconfiguration of interaction inter-

faces. In attribute-based communication, the interac-

tion is based on value-passing broadcast, and thus there

is no way to create dedicated communication struc-

ture at run-time. For connector-based communication,

the communication structure is static and cannot be

changed. R-CHECK could be viewed as a generalisation

of π-calculus [33] like reconfiguration in a multi-party

settings. Moreover, R-CHECK is uniquely distinguished

from existing formalisms whether they are attribute-

based suchAbC or connector-based such as static BIP [12]

due to run-time reconfiguration of interaction inter-

faces. In attribute-based communication, the interac-

tion is based on value-passing broadcast, and thus there

is no way to create dedicated communication struc-

ture at run-time. For connector-based communication,

the communication structure is static and cannot be

changed. R-CHECK could be viewed as a generalisation

of π-calculus [33] with reconfiguration in a multi-party

settings.

Several model-checking toolkits support specifica-

tion languages that are designed to reason about con-

current systems and protocol design, and thus allow

to model processes that may interact with each other,

usually via channel synchronisation. Examples include

SPIN, mCRL [13], and CADP [23]. These toolkits are

successful in reasoning about static coordination pro-

tocols, mainly related to fixed-structure systems like

hardware and low-level communication protocols, but

do not expand their coverage to multi-agent system fea-

tures. They also cannot handle infinite-state systems,

are usually tied to a limited choice of verification algo-

rithms, and have limited support for interoperability:

20 Y. Abd Alrahman et al.

this last concern is partially mitigated by third-party

projects such as LTSmin [29]. By contrast, the input

language used by nuXmv [15] is designed at the seman-

tic level of transition systems, making it an excellent

candidate to serve as a backbone for special-purpose

model-checking tools. Furthermore, this toolkit imple-

ments a large number of efficient algorithms for verifica-

tion. These considerations led us to integrate R-CHECK

with nuXmv.

Future works. We plan to equip R-CHECK with a

richer specification language that allows reasoning about

the knowledge of agents and the dissemination of knowl-

edge in distributed settings. For this purpose, we will

investigate the possible integration of R-CHECK with

MCMAS [31] to make use of the specialised symbolic

algorithms that are introduced for knowledge reasoning.

We also plan to integrate the partial order semantics of

ReCiPe models that were introduced in [4].

References

1. Abd Alrahman, Y., Azzopardi, S., Piterman, N.: Model
checking reconfigurable interacting systems. In: T. Mar-
garia, B. Steffen (eds.) Leveraging Applications of For-
mal Methods, Verification and Validation. Adaptation
and Learning - 11th International Symposium, ISoLA
2022, Rhodes, Greece, October 22-30, 2022, Proceed-
ings, Part III, Lecture Notes in Computer Science,
vol. 13703, pp. 373–389. Springer (2022). DOI 10.
1007/978-3-031-19759-8\ 23. URL https://doi.org/

10.1007/978-3-031-19759-8_23

2. Abd Alrahman, Y., Azzopardi, S., Piterman, N.: R-check:
A model checker for verifying reconfigurable mas. In:
Proceedings of the 21st International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS ’22,
p. 1518–1520. International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC (2022).
DOI 10.5555/3535850.3536020

3. Abd Alrahman, Y., De Nicola, R., Loreti, M.: A calculus
for collective-adaptive systems and its behavioural the-
ory. Inf. Comput. 268 (2019). DOI 10.1016/j.ic.2019.
104457

4. Abd Alrahman, Y., Martel, M., Piterman, N.: A PO
characterisation of reconfiguration. In: H. Seidl, Z. Liu,
C.S. Pasareanu (eds.) Theoretical Aspects of Comput-
ing - ICTAC 2022 - 19th International Colloquium, Tbil-
isi, Georgia, September 27-29, 2022, Proceedings, Lec-
ture Notes in Computer Science, vol. 13572, pp. 42–
59. Springer (2022). DOI 10.1007/978-3-031-17715-6\ 5.
URL https://doi.org/10.1007/978-3-031-17715-6_5

5. Abd Alrahman, Y., Perelli, G., Piterman, N.: Recon-
figurable interaction for MAS modelling. In: A.E.F.
Seghrouchni, G. Sukthankar, B. An, N. Yorke-Smith
(eds.) Proceedings of the 19th International Conference
on Autonomous Agents and Multiagent Systems, AA-
MAS ’20, Auckland, New Zealand, May 9-13, 2020, pp.
7–15. International Foundation for Autonomous Agents
and Multiagent Systems (2020). DOI 10.5555/3398761.
3398768

6. Abd Alrahman, Y., Piterman, N.: Modelling and veri-
fication of reconfigurable multi-agent systems. Auton.
Agents Multi Agent Syst. 35(2), 47 (2021). DOI
10.1007/s10458-021-09521-x

7. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Re-
active Systems: Modelling, Specification and Verifica-
tion. Cambridge University Press (2007). DOI 10.1017/
CBO9780511814105

8. Alrahman, Y.A., De Nicola, R., Loreti, M.: Programming
interactions in collective adaptive systems by relying on
attribute-based communication. Sci. Comput. Program.
192, 102428 (2020). DOI 10.1016/j.scico.2020.102428

9. Alur, R., Henzinger, T.: Reactive Modules. Formal Meth-
ods in System Design 15(1), 7–48 (1999)

10. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time
temporal logic. J. ACM 49(5), 672–713 (2002). DOI
10.1145/585265.585270

11. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous
real-time components in BIP. In: 3th International Con-
ference on Software Engineering and Formal Methods
(SEFM), pp. 3–12. IEEE, Pune, India (2006). DOI
10.1109/SEFM.2006.27

12. Bliudze, S., Sifakis, J.: The algebra of connectors -
structuring interaction in BIP. IEEE Trans. Comput-
ers 57(10), 1315–1330 (2008). DOI 10.1109/TC.2008.26.
URL https://doi.org/10.1109/TC.2008.26

13. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M.,
Neele, T., de Vink, E.P., Wesselink, W., Wijs, A.,
Willemse, T.A.C.: The mcrl2 toolset for analysing con-
current systems - improvements in expressivity and us-
ability. In: T. Vojnar, L. Zhang (eds.) Tools and Al-
gorithms for the Construction and Analysis of Systems
- 25th International Conference, TACAS 2019, Held
as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2019, Prague, Czech
Republic, April 6-11, 2019, Proceedings, Part II, Lec-
ture Notes in Computer Science, vol. 11428, pp. 21–
39. Springer (2019). DOI 10.1007/978-3-030-17465-1\ 2.
URL https://doi.org/10.1007/978-3-030-17465-1_2

14. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia,
F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella,
A.: Nusmv 2: An opensource tool for symbolic model
checking. In: E. Brinksma, K.G. Larsen (eds.) Computer
Aided Verification, 14th International Conference, CAV
2002,Copenhagen, Denmark, July 27-31, 2002, Proceed-
ings, Lecture Notes in Computer Science, vol. 2404, pp.
359–364. Springer (2002). DOI 10.1007/3-540-45657-0\
29

15. Cimatti, A., Griggio, A.: Software model checking via
IC3. In: P. Madhusudan, S.A. Seshia (eds.) Computer
Aided Verification - 24th International Conference, CAV
2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings,
Lecture Notes in Computer Science, vol. 7358, pp. 277–
293. Springer (2012). DOI 10.1007/978-3-642-31424-7\
23

16. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Check-
ing. MIT Press, Cambridge, MA, USA (2000)

17. Cohen, P.R., Levesque, H.J.: Intention is choice with
commitment. Artif. Intell. 42(2-3), 213–261 (1990). DOI
10.1016/0004-3702(90)90055-5

18. De Nicola, R., Duong, T., Inverso, O.: Verifying abc spec-
ifications via emulation. In: T. Margaria, B. Steffen (eds.)
Leveraging Applications of Formal Methods, Verifica-
tion and Validation: Engineering Principles - 9th Interna-
tional Symposium on Leveraging Applications of Formal
Methods, ISoLA 2020, Rhodes, Greece, October 20-30,
2020, Proceedings, Part II, Lecture Notes in Computer

https://doi.org/10.1007/978-3-031-19759-8_23
https://doi.org/10.1007/978-3-031-19759-8_23
https://doi.org/10.1007/978-3-031-17715-6_5
https://doi.org/10.1109/TC.2008.26
https://doi.org/10.1007/978-3-030-17465-1_2

Language Support for Verifying Reconfigurable Interacting Systems 21

Science, vol. 12477, pp. 261–279. Springer (2020). DOI
10.1007/978-3-030-61470-6\ 16. URL https://doi.org/

10.1007/978-3-030-61470-6_16
19. De Nicola, R., Latella, D., Lluch-Lafuente, A., Loreti, M.,

Margheri, A., Massink, M., Morichetta, A., Pugliese, R.,
Tiezzi, F., Vandin, A.: The SCEL language: Design, im-
plementation, verification. In: M. Wirsing, M.M. Hölzl,
N. Koch, P. Mayer (eds.) Software Engineering for Col-
lective Autonomic Systems - The ASCENS Approach,
Lecture Notes in Computer Science, vol. 8998, pp. 3–
71. Springer (2015). DOI 10.1007/978-3-319-16310-9\ 1.
URL https://doi.org/10.1007/978-3-319-16310-9_1

20. De Nicola, R., Maggi, A., Sifakis, J.: DReAM: Dy-
namic reconfigurable architecture modeling. In: T. Mar-
garia, B. Steffen (eds.) 8th International Symposium on
Leveraging Applications of Formal Methods, Verifica-
tion and Validation (ISoLA), LNCS, vol. 11246, pp. 13–
31. Springer, Limassol, Cyprus (2018). DOI 10.1007/
978-3-030-03424-5 2

21. D’Ippolito, N., Fischbein, D., Chechik, M., Uchitel,
S.: MTSA: the modal transition system analyser. In:
23rd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2008), 15-19 Septem-
ber 2008, L’Aquila, Italy, pp. 475–476. IEEE Computer
Society (2008). DOI 10.1109/ASE.2008.78

22. Fagin, R., Halpern, J., Moses, Y., Vardi, M.Y.: Reasoning
about Knowledge. MIT Press (1995)

23. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP
2011: a toolbox for the construction and analysis of dis-
tributed processes. Int. J. Softw. Tools Technol. Transf.
15(2), 89–107 (2013). DOI 10.1007/s10009-012-0244-z.
URL https://doi.org/10.1007/s10009-012-0244-z

24. Giannakopoulou, D., Magee, J.: Fluent model checking
for event-based systems. In: Proceedings of the 9th Eu-
ropean software engineering and 11th ACM SIGSOFT
international symposium on Foundations of software en-
gineering, pp. 257–266. ACM (2003)

25. Gutierrez, J., Harrenstein, P., Wooldridge, M.: From
Model Checking to Equilibrium Checking: Reactive Mod-
ules for Rational Verification. Artif. Intell. 248, 123–157
(2017). DOI 10.1016/j.artint.2017.04.003

26. Hannebauer, M.: Autonomous Dynamic Reconfiguration
in Multi-Agent Systems, Improving the Quality and Ef-
ficiency of Collaborative Problem Solving, Lecture Notes
in Computer Science, vol. 2427. Springer (2002). DOI
10.1007/3-540-45834-4

27. Hoare, C.A.R.: Communicating sequential processes. In:
C.B. Jones, J. Misra (eds.) Theories of Programming:
The Life and Works of Tony Hoare, pp. 157–186. ACM
/ Morgan & Claypool (2021). DOI 10.1145/3477355.
3477364

28. Huang, X., Chen, Q., Meng, J., Su, K.: Reconfigurabil-
ity in reactive multiagent systems. In: S. Kambham-
pati (ed.) Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI 2016,
New York, NY, USA, 9-15 July 2016, pp. 315–321. IJ-
CAI/AAAI Press (2016). URL http://www.ijcai.org/

Abstract/16/052
29. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom,

S., van Dijk, T.: Ltsmin: High-performance language-
independent model checking. In: C. Baier, C. Tinelli
(eds.) Tools and Algorithms for the Construction and
Analysis of Systems - 21st International Conference,
TACAS 2015, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS
2015, London, UK, April 11-18, 2015. Proceedings, Lec-
ture Notes in Computer Science, vol. 9035, pp. 692–707.

Springer (2015). DOI 10.1007/978-3-662-46681-0\ 61.
URL https://doi.org/10.1007/978-3-662-46681-0_61

30. Legay, A., Lukina, A., Traonouez, L.M., Yang, J.,
Smolka, S.A., Grosu, R.: Statistical Model Checking,
pp. 478–504. Springer International Publishing, Cham
(2019). DOI 10.1007/978-3-319-91908-9\ 23

31. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-
source model checker for the verification of multi-agent
systems. STTT 19(1), 9–30 (2017)

32. Loreti, M., Hillston, J.: Modelling and analysis of collec-
tive adaptive systems with CARMA and its tools. In:
M. Bernardo, R. De Nicola, J. Hillston (eds.) Formal
Methods for the Quantitative Evaluation of Collective
Adaptive Systems - 16th International School on Formal
Methods for the Design of Computer, Communication,
and Software Systems, SFM 2016, Bertinoro, Italy, June
20-24, 2016, Advanced Lectures, Lecture Notes in Com-
puter Science, vol. 9700, pp. 83–119. Springer (2016).
DOI 10.1007/978-3-319-34096-8\ 4. URL https://doi.

org/10.1007/978-3-319-34096-8_4

33. Milner, R., Parrow, J., Walker, D.: A calculus of mobile
processes, I. Inf. Comput. 100(1), 1–40 (1992). DOI
10.1016/0890-5401(92)90008-4

34. Nenzi, L., Bortolussi, L., Loreti, M.: jsstl - A tool
to monitor spatio-temporal properties. In: A. Puli-
afito, K.S. Trivedi, B. Tuffin, M. Scarpa, F. Machida,
J. Alonso (eds.) 10th EAI International Conference on
Performance Evaluation Methodologies and Tools, VAL-
UETOOLS 2016, Taormina, Italy, 25th-28th Oct 2016.
ACM (2016). DOI 10.4108/eai.25-10-2016.2266978. URL
https://doi.org/10.4108/eai.25-10-2016.2266978

35. Nicola, R.D., Latella, D., Lluch-Lafuente, A., Loreti, M.,
Margheri, A., Massink, M., Morichetta, A., Pugliese, R.,
Tiezzi, F., Vandin, A.: The SCEL language: Design, im-
plementation, verification. In: M. Wirsing, M.M. Hölzl,
N. Koch, P. Mayer (eds.) Software Engineering for Col-
lective Autonomic Systems - The ASCENS Approach,
Lecture Notes in Computer Science, vol. 8998, pp. 3–
71. Springer (2015). DOI 10.1007/978-3-319-16310-9\ 1.
URL https://doi.org/10.1007/978-3-319-16310-9_1

36. Piterman, N., Pnueli, A.: Temporal logic and fair dis-
crete systems. In: E.M. Clarke, T.A. Henzinger, H. Veith,
R. Bloem (eds.) Handbook of Model Checking, pp. 27–
73. Springer (2018). DOI 10.1007/978-3-319-10575-8\ 2.
URL https://doi.org/10.1007/978-3-319-10575-8_2

37. Wooldridge, M.J.: An Introduction to MultiAgent Sys-
tems, Second Edition. Wiley (2009)

38. Zon, N., Gilmore, S., Hillston, J.: Rigorous graphical
modelling of movement in collective adaptive systems.
In: T. Margaria, B. Steffen (eds.) Leveraging Applica-
tions of Formal Methods, Verification and Validation:
Foundational Techniques - 7th International Sympo-
sium, ISoLA 2016, Imperial, Corfu, Greece, October 10-
14, 2016, Proceedings, Part I, Lecture Notes in Com-
puter Science, vol. 9952, pp. 674–688 (2016). DOI
10.1007/978-3-319-47166-2\ 47. URL https://doi.org/

10.1007/978-3-319-47166-2_47

https://doi.org/10.1007/978-3-030-61470-6_16
https://doi.org/10.1007/978-3-030-61470-6_16
https://doi.org/10.1007/978-3-319-16310-9_1
https://doi.org/10.1007/s10009-012-0244-z
http://www.ijcai.org/Abstract/16/052
http://www.ijcai.org/Abstract/16/052
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.4108/eai.25-10-2016.2266978
https://doi.org/10.1007/978-3-319-16310-9_1
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-47166-2_47
https://doi.org/10.1007/978-3-319-47166-2_47

	Introduction
	ReCiPe: a model of computation
	The R-CHECK Language
	Case Study: Autonomous resource allocation
	Model Checking of R-CHECK Systems
	LTL & LTOL Model-Checking and Simulation
	Concluding Remarks

