
Noname manuscript No.
(will be inserted by the editor)

Modelling Flocks of Birds and Colonies of Ants from the
Bottom Up

Rocco De Nicola · Luca Di Stefano · Omar Inverso · Serenella Valiani

the date of receipt and acceptance should be inserted later

Abstract This paper advocates the use of composi-

tional specifications based on formal languages as a

means of modelling and analysing sophisticated collec-

tive behaviour in natural systems. With the use of ap-

propriate linguistic constructs, models can be developed

that are both compact and intuitive, and can be easily

refined and extended in small steps. Automated work-

flows can be implemented on top of this methodology

to provide quick feedback, enabling rapid design itera-

tions. To support our argument, we present three exam-

ples from the natural world, focusing on flocks of birds

and colonies of ants, which feature well-known examples

of emergent behaviour in collective adaptive systems.

We use an agent-based language to develop simple mod-

els that aim at capturing these collective phenomena,

and discuss the specific language constructs that we use

in the process. Then, we adapt an existing verification

tool for the language to simulate our models, and show

that our simulations do display emergent behaviour.

Acknowledgements Work partially funded by MIUR project
PRIN 2017FTXR7S IT MATTERS (Methods and Tools for
Trustworthy Smart Systems), ERC consolidator grant no.
772459 D-SynMA (Distributed Synthesis: from Single to Mul-
tiple Agents), and PRO3 MUR project Software Quality.

Rocco De Nicola
IMT School for Advanced Studies, Lucca, Italy

Luca Di Stefano
University of Gothenburg, Gothenburg, Sweden

Omar Inverso
Gran Sasso Science Institute (GSSI), L’Aquila, Italy

� Serenella Valiani
IMT School for Advanced Studies, Lucca, Italy
E-mail: serenella.valiani@imtlucca.it

1 Introduction

Over the years, biological and natural systems such as

flocks of birds, colonies of ants, schools of fish, and

swarms of insects have received considerable attention

from researchers across different disciplines. These sys-

tems exhibit complex structures that can dynamically

respond to changing conditions. To understand these

systems, researchers have used various mathematical

frameworks. For instance, flocking, where a group of

birds exhibits coherent patterns of collective motion,

has been modelled using graph theory [36], distributed

control laws [46], and statistical mechanics [6]. Another

example can be found in colonies of ants; the way they

distribute their workforce has been studied through dif-

ferential equation [48], search algorithms and strate-

gies [35,53] or probabilistic communication [14]

The design of these systems has been approached

in terms of aggregate features and relies on simplifying

assumptions about the individual behaviour. However,

recent studies have shown that a bottom-up design ap-

proach could lead to a more effective design of adap-

tive systems. Compositional methodology has gained

prominence in several disciplines, including epidemiol-

ogy, ecology, economics, and social sciences [30,24,47,

8], where the focus lies on the examination of individual

components rather than the entire system.

In this paper, we argue for a bottom-up approach

based on formal specification languages. This approach

defines the system in terms of individual components

and local rules, allowing the collective behaviour of the

system to emerge naturally from the combined effect of

the actions of the components. This approach can be

helpful in reproducing sophisticated collective dynam-

ics intuitively, and, when combined with appropriate

linguistic constructs, can yield compact and intuitive



2 Rocco De Nicola et al.

specifications that are easy to refine. The adoption of

a formal language allows the implementation of auto-

mated workflows for simulation or formal analysis that

can provide quick feedback, enabling rapid design iter-

ations.

We present three examples to illustrate our point

and write our models using a specification language

previously defined by us [11]. In the first example we

develop a model of a flock by gradually defining the

individual behaviour and features of a bird. As we pro-

gressively refine it, we aim at keeping the behaviour of

individual birds as decentralized as possible. We grad-

ually present the constructs used in the specifications,

to keep them compact and intuitive. Upon attaining a

fully refined model, we simulate the evolution of a flock

obtained by composing a number of birds together. Our

results indicate that the flock exhibits collective charac-

teristics. In particular, when faced with external aggres-

sion from a predatory bird, the members of the flock

demonstrate the ability to flee the threat and subse-

quently reform into a cohesive unit once the danger

has passed. The second example introduces a model

that describes the behaviour of an ant within a colony.

We simulate the evolution of the behaviour of a colony

during food foraging. In particular, we show that the

colony tends to choose the shortest path when faced

with multiple paths. The third example, on the other

hand, describes the behaviour of a small group of ants

on a finite bar. It is trivial to observe that the ants fall

off the bar. The emergent behaviour we aim to demon-

strate concerns the order of events that characterize

the model. We show the order of events using formal

verification techniques. We borrowed this last example

from a paper presented at the conference to which this

special issue is dedicated [23].

In our view, the considered examples provide evi-

dence that the design of adaptive systems can bene-

fit from the exploitation of the features and principles

of biological and natural systems. By using a bottom-

up approach, where the behaviour of individual entities

is governed by simple rules and local reactions, it be-

comes possible to design a scalable, adaptive, and effi-

cient framework to address the research questions posed

in the field of adaptive systems design.

This paper is a revised version of [12] but extends

it in several ways. In our previous paper, we consid-

ered the evolution of a single simulation of the model

presented in Section 2.1, while here in Section 3.1, we

provide further simulation results that show the level

of cohesion that the flock is able to achieve after an

attack. Furthermore, we introduce new examples (Sec-

tions 2.2 and 2.3) along with their experimental evalu-

ation. In particular, in Section 3.2 we provide simula-

Listing 1: Baseline agent modelling.

1 agent Bird {
2 interface =
3 x: 0..G;
4 y: 0..G;
5 dirx: −D..D + 1;
6 diry: −D..D + 1
7

8 Behaviour = Move; Behaviour

9 Move = {
10 x← x+ dirx;
11 y← y+ diry
12 }
13 }

tion results that show how a colony of ants distributes

along two possible paths during the food foraging pro-

cess. In Section 3.3 we show instead how we can prove

interesting temporal properties (in this case, about the

ordering of events for every execution of the example

from Section 2.3) by means of mechanized verification

procedures.

The paper is structured as follows. In Section 2,

we define the three models of the flock of birds and

ant colonies using various constructs of the language.

Our experimental setup for simulation and verification,

along with our controlled experiments, are described in

Section 3. In Section 4, we provide an overview of re-

lated work. Finally, in Section 5, we conclude with some

final remarks and discuss potential avenues for future

research.

2 Specification

In this section, we present three examples that illus-

trate how to use LAbS to model agents. Starting with

simple initial models, we gradually refine the specifica-

tions by leveraging the expressiveness of the language

and its constructs, with the goal of obtaining intuitive

and readable specifications of the individual agents in

the system.

2.1 Flock of birds

The model in this Section mimics the dynamics of a

flock of birds when confronted by a predator. Our model

is constructed in stages, with the introduction of lan-

guage constructs occurring as the model is expanded,

thereby preserving a concise and intuitive specification.

Description of a bird. Each bird of the flock pos-

sesses two defining attributes; specifically, its position

and its orientation. The former is represented by a set

of coordinates in a two-dimensional space denoted as



Modelling Flocks of Birds and Colonies of Ants from the Bottom Up 3

(0,1) (1,1)(-1,1)

(0,-1) (1,-1)(-1,-1)

(1,0)(-1,0)

(a) D = 1.

(0,2) (1,2)

(2,1)

(-1,2)

(-2,1)

(0,-2) (1,-2)

(2,-1)

(-1,-2)

(-2,-1)

(1,0) (2,0)(-1,0)(-2,0)

(2,2)

(2,-2)

(-2,2)

(-2,-2)

(b) D = 2 (some labels omitted
for readability).

Fig. 1: Possible heading vectors that a bird can assume

for different values of D.

(x, y), while the latter is characterized by a pair of in-

tegers (dirx, diry) that represent a heading vector. This

comprehensive depiction enables the representation of

both the bird’s displacement direction, as indicated by

the angle subtended by the heading vector, and its ve-

locity, which is portrayed by the length of the heading

vector.

Listing 1 shows how we can model the above descrip-

tion.1 We start by defining and initializing the observ-

able features, or attributes, of the agent. These are listed

within the first Section named interface, in lines 2–6.

Attributes x and y correspond to any valid coordinate

on a grid that represents an arena where the flock is lo-

cated. The grid is a square with edges of lengthG, so the

possible values range from 0 to G−1 inclusive (lines 3–

4). Currently, we assume that agents never reach the

edge. The range of initial values for dirx and diry spans

from −D to D (lines 5–6). Here, D represents the max-

imum displacement along each coordinate of the grid.

It is noteworthy that, as the value of D increases, the

number of possible heading vectors also increases, as is

illustrated in Figure 1. Finally, the actual initial value

of each attribute is chosen non-deterministically.2

Behaviour of a bird. Listing 1 also specifies a very

simple behaviour for our birds. The behaviour is de-

fined as a Behavior process. Its definition is recursive,

meaning that each bird will repeatedly carry out the

actions described in the Move process (line 8). This

process, in turn, updates the two attributes (x, y) with
(x+dirx, y+diry), modelling the bird’s movement along

1 In this paper, we present condensed, human-readable ver-
sions of the full, machine-readable specifications. These are
available at https://github.com/labs-lang/labs-examples/

tree/isola2022/isola2022.
2 Note that the specifications read −D..D+1 because ranges

in LAbS are uppoer-bound exclusive (i.e., the value D + 1 is
not part of the range).

Listing 2: Alignment.

1 agent Bird {
2 interface = . . .
3

4 Behaviour = Move; Behaviour
5 Move = {
6 p := pick 1;
7 dirx← dirxp;
8 diry← diryp;

9 x← x+ dirx;
10 y← y+ diry
11 }
12 }

its displacement vector (lines 10–11). We assume that

the system evolves in discrete time steps and that at

every step one bird executes one assignment.3 Each as-

signment is performed atomically, but sequences of as-

signments may be susceptible to interleaving among dif-

ferent agents. To prevent this, i.e., to let the same agent

execute multiple assignments atomically, these must be

enclosed in curly brackets, as shown in lines 9–12.

Alignment. The specification above does not yield any

form of collective behaviour, as the birds move inde-

pendently of each other without considering their flock-

mates. Consequently, it becomes necessary to introduce

models of birds that are influenced by the movements

of their neighbours. In fact, flocking behaviour is com-

monly believed to be an outcome of local interaction

mechanisms [22,42]. Specifically, we begin by examin-

ing alignment, which is the dynamic by which each bird

modifies its heading based on the heading of its neigh-

bouring birds. A trivial method to accomplish this is to

allow each bird to mimic the direction of another bird

in the flock. To model this behaviour, each bird must

be able to observe the heading of other birds.

In Listing 2, lines 6–8, we present the modifications

required to implement the alignment behaviour. To en-

hance clarity, we omit the interface as it is identical to

that of Listing 1. It is worth noting that even though

agents remain anonymous to each other, they possess a

sense of identity provided by a unique identifier (id) as-
signed to each agent within the system. This identifier

serves a similar purpose to the this or self keywords in

general-purpose programming languages.

The availability of identifiers enables us to use the

pick operator. It allows an agent to select another agent

from the system in a non-deterministic manner. Specif-

ically, in line 6, the instruction p := pick 1 selects the

identifier of another agent and stores it in a local vari-

able p. Generally, pick k returns k distinct identifiers

that are guaranteed to be different from the identifier

3 We actually assume this for every LAbS model.

https://github.com/labs-lang/labs-examples/tree/isola2022/isola2022
https://github.com/labs-lang/labs-examples/tree/isola2022/isola2022


4 Rocco De Nicola et al.

Listing 3: Cohesion.

1 agent Bird {
2 interface = . . .
3

4 Behaviour = Move; Behaviour
5 Move = {
6 p := pick 1;
7

8 a x := xp + ω · dirxp;
9 a y := yp + ω · diryp;

10 sgn x := 0 if x = a x else

11 −1 if x > a x else 1;
12 diff x := d((x, 0), (a x, 0);
13 . . . (Same for sgn y, diff y)
14 a dirx := sgn x · (D :2 if diff y > diff x else D);
15 a diry := sgn y · (D :2 if diff y < diff x else D);
16

17 dirx← (dirx+ a dirx) : 2;
18 x← x+ dirx
19 . . . (Same for diry, y)
20 }
21 }

of the agent performing the selection. We utilize the

operator := to denote assignments to local variables,

which are created implicitly upon their first assignment.

In lines 7–8, we update the components of the head-

ing vector by replacing them with the corresponding

components of the selected agent. Since the bird now

has the identifier of an agent stored in p, it can access

the selected agent’s heading vector using the syntax

dirxp, diryp. In this specification, the bird updates its

own heading vector with that of p (lines 7–8) and then

moves by updating its own position (lines 9–10).

Cohesion. Birds in a real flock exhibit not only align-

ment in their direction of movement, but also cohesion,

i.e., the ability to keep close to each other. However,

the model of flocking seen so far does not accurately

display this behaviour. In fact, even when two birds

are far apart, they tend to move in the same direction

without getting closer to each other. To address this

limitation, we modify the current model to incorporate

both alignment and cohesion. In our modified model,

each bird selects another bird in the flock, estimates its

future position based on its current direction, and then

steers towards that position.

Listing 3 shows how cohesion can be modelled. We

use the ternary operator a if c else b to represent a

conditional expression that evaluates to a if condition

c is true and b otherwise. The syntax a : b denotes

integer division with rounding, and d((x1, y1), (x2, y2))
denotes the Manhattan distance between two points,

i.e., |x1 − x2| + |y1 − y2|. To implement the modified

behaviour, each bird selects a target bird to approach

(line 6). The agent estimates the target’s position after

Listing 4: Flock dispersion and birds collision.

1 agent Bird {
2 interface = . . .
3

4 Behaviour = Move; Behaviour
5 Move = {
6 p := pick 1;
7 pIsIsolated := forall Bird b,
8 (b = p) or d((xp, yp), (xb, yb)) > δ;

9 appId := id if pIsIsolated else p;
10

11 a x := xappId + ω · dirxappId;
12 sgn x := 0 if x = a x else 1 if x > a x else 1;
13 diff x := d((x, 0), (a x, 0);
14 . . . (Same for a y, sgn y, diff y)
15 a dirx := sgn x · (D :2 if diff y > diff x else D);
16 a diry := sgn y · (D :2 if diff y < diff x else D);
17

18 dirx← (dirx+ a dirx) : 2;
19 diry← (diry+ a diry) : 2;
20 posFree := forall Bird b,
21 (xb ̸= x+ dirx) or (yb ̸= y+ diry);
22 x← x+ dirx if posFree else x
23 y← y+ diry if posFree else y
24 }
25 }

ω steps (lines 8–9), and determines an approach vec-

tor (a dirx, a diry) pointing towards that position. The

approach vector is computed component-wise (lines 11–

15). The instructions for the y-component are omitted

for sake of brevity. Finally, the bird’s new heading vec-

tor is computed as the average of its current heading

vector and the approach vector (line 17), providing the

bird with some inertia for more realistic movement.

Avoiding flock dispersion and collisions. Despite

the specifications provided so far, undesired outcomes

such as flock dispersion and collisions can still occur.

These problems arise when birds attempt to approach

isolated birds or move to occupied locations, respec-

tively. To avoid the former, we need to provide birds

with the capability of checking whether a bird is iso-

lated. Similarly, to prevent collisions, it is necessary for

each bird to assess whether its target location is free of

other birds before moving.

In Listing 4, we incorporate the above refinements.

First, we check at line 7 whether a bird p is isolated,

i.e., its distance from all other birds is greater than a

parameter δ. To facilitate this check, we use quantified

predicates that allow us to predicate over the attributes

of all agents, or some agent, of given types. If the bird

is isolated, it will continue along its current direction

(line 9), and will not be approached by other birds.

Similarly, to avoid collisions, a check at lines 20–23 is

introduced to ensure that the bird only moves to an

unoccupied position pointed at by its heading vector.



Modelling Flocks of Birds and Colonies of Ants from the Bottom Up 5

Listing 5: Fleeing from a predator.

1 agent Predator { ... }
2

3 agent Bird {
4 interface = . . .
5

6 Behaviour = Move; Behaviour

7 Move = {
8 p := pick 1 Bird;
9 . . .

10 a diry := sgn y · (D :2 if diff y < diff x else D);
11

12 e := pick 1 Predator;
13 e x := xe + ν · dirxe;
14 esgn x := 1 if x ≥ e x else − 1;
15 ediff x := d((x, 0), (e x, 0));
16 . . . (Same for e y, esgn y, ediff y)
17 e dirx := esgn x·(D :2 if ediff y>ediff x else D);
18 e diry := esgn y·(D :2 if ediff y<ediff x else D);
19

20 e dist := d((x, y), (e x, e y));
21 f dirx := e dirx if e dist < λ else a dirx;
22 dirx← (dirx+ f dirx) : 2;
23 . . . (Same for f diry, diry)
24 posFree := forall Bird b,
25 (xb ̸= x+ dirx) or (yb ̸= y+ diry);
26 x← x+ dirx if posFree else x
27 }
28 }

If another bird is already occupying that position, the

bird stays in its current location.

Fleeing from a predator. Until now, we have con-

sidered a flock that is unperturbed by external threats.

We shall now modify the model to enable birds to rec-

ognize predators and flee from them when they come

too close, while preserving the flocking dynamics that

we have introduced so far.

Listing 5 presents the modified implementation of

the model. To implement this new behaviour, we make

some slight modifications to the model. In particular,

we refine the pick operator introduced earlier by mak-

ing it typed. For example, at line 8, a bird selects an-

other member of the flock and performs the same op-

erations as seen in Listing 4. We omit some of the in-

structions for sake of brevity. Similarly, at line 12, the

bird identifies a predator and evaluates its distance from

itself. If the distance is too small, the bird will not ap-

proach it as usual, but instead flee from the predator.

To model this fleeing behaviour, we compute a repulsive

heading vector (e dirx, e diry) and let the bird follow it

if the predator is closer than a given parameter λ.

LAbS agents and global knowledge. We should

emphasize that certain operations in the specifications

above (specifically, those at lines 6, 7–8, 11, and lines 20–

21 of Listing 4) assume that a bird can access the state

of other birds in the flock.

Listing 6: Description of the environment.

1 system {
2 ...
3 environment = ph[5] : 0
4 }

Formally, this requires each bird to possess global

knowledge of the system; however, we argue that these

operations are reasonable in practice by the fact that

they model observations that a bird can carry out lo-

cally. For instance, in line 6, a bird can pick another

flockmate by simply looking at its surroundings, with-

out necessarily being aware of every bird in the system.

Determining the direction of a bird (line 11), or whether

it is isolated (lines 7–8), may be done by looking at

that bird and the space around it. Lastly, finding out

whether there is a bird at location (x + dirx, y + diry)
(lines 20–21) does not require an interrogation of all

birds in the system; rather, one can simply observe the

location itself.

In conclusion, we have chosen to equip LAbS with

these high-level primitives because they greatly simplify

the specification process, and because they are usually

realistic, i.e., they may be carried out by agents through

local observations and without actual global knowledge.

LAbS allows a rather high degree of freedom when us-

ing these primitives, but leaves to the user the problem

of determining whether the corresponding observations

are realistic or not.

2.2 Pathfinding ants

In this section, we set out to model an experiment [26]

showing that a colony of ants is able to select the short-

est path between two possible routes from its nest to a

food source. Initially, ants distribute more or less evenly

among the short and the long route. However, each ant

releases a constant amount of pheromone as it walks

from the nest to the food source and back. Each ant

is also able to sense the concentration of pheromone

present in the soil, and prefers the route where this con-

centration is higher. Since the shortest path gets quickly

marked both by ants leaving the nest and by those re-

turning with food, a feedback mechanism is triggered

that makes all ants always select the shortest path,

after a few minutes. The model ignores the fact that

pheromone evaporates after a while, since the shortest

path becomes established in a much shorter time span

than the one after which evaporation becomes notice-

able.

Description of the environment.We consider a sim-

ple scenario where the path diverges into two sub-paths



6 Rocco De Nicola et al.

0

1

2 3

4

Fig. 2: Structure of the paths that ants can follow.

starting from the nest. The first sub-path, which is

the shortest, can be traversed by an ant in one steps,

whereas the second sub-path, which is the longest, re-

quires each ant to take two steps. In the experiment

proposed in [26], the ratio between long branches and

short branches was indeed 2. Both sub-paths eventu-

ally converge where the food source is located. As an

ant moves along either of the two sub-paths, it releases

a certain quantity of pheromone with each step. It is

important to note that, at the beginning of the system,

the level of pheromone on both sub-paths is zero as no

ants have passed through them yet.

The diagram of the model is depicted in Figure 2.

We depict the ants’ environment as a graph with five

nodes, where the node labelled 0 corresponds to the

nest and the node labelled 4 corresponds to the food

source. As mention above, each node can hold a certain

level of pheromone. We represent this phenomenon in

Listing 6, by means of a shared array denoted as ph,
initially set to zero.

Description of an ant. Each ant in the colony is char-

acterized by two attributes, namely its position and its

direction. All the ants in the colony start in the nest,

and they must travel to the food source to obtain food.

Once an ant leaves the nest, it must complete the entire

journey to reach the food source before it can return to

the nest. It cannot change direction halfway along the

route.

Listing 7 shows a model for the above description.

In particular lines 3–4 define the interface of an ant of

the colony. Both attributes are represented using inte-

ger values. The attribute pos (line 3) identifies the posi-
tion of an ant and corresponds to the number of graph

node where it is located. This value is initialized to 0

as initially all the ants are in the nest. The attribute

dir (line 4) indicates the direction of an ant. If it moves

from the nest towards the food source, its value is 1,

otherwise, it is -1. It is initially set to 1 as all the ants

are initially located in the nest.

Behaviour of an ant. An ant located in the nest

chooses, if possible, the path with the highest level

of pheromone. If the pheromone levels of both paths

are similar, the ant non-deterministically selects one of

Listing 7: Description and behaviour of an

Ant.
1 agent Ant {
2 interface =
3 pos: 0;
4 dir: 1
5

6 Behavior = (Next0

7 ++
8 Next4

9 ++
10 NextOther);
11 DropPh; Behaviour

12

13 Next0 = pos = 0→
14 (ph[1]− ph[2] ≤ δ)→ (pos, dir← 2, 1)
15 ++
16 (ph[2]− ph[1] ≤ δ)→ (pos, dir← 1, 1)
17

18 Next4 = . . .

19

20 NextOther = pos ̸= 0 ∧ pos ̸= 4→
21 pos← (4 if dir = 1 else 0) if pos = 1 else
22 (3 if dir = 1 else 0) if pos = 2 else

23 (4 if dir = 1 else 2) if pos = 3 else − 1
24

25 DropPh = {
26 ph[pos]⇐ ph[pos] if (pos = 0 ∨ pos = 4)
27 else ph[pos]+ 1;
28 }
29 }

them. Upon selecting a path, the ant releases a specific

amount of pheromone along that path. When the ant

reaches the food source, it again chooses its path based

on the level of pheromone present. It is worth noting

that the ant can return along a different route than the

one it used on its outward journey.

Listing 7 shows the implementation of the behaviour

above. The behaviour is defined recursively in lines 6–

11. The operator++ denotes a nondeterministic choice

between behaviours. In our case, the agent has three op-

tions, listed in lines 6–10 and named Next0, Next4,

and NextOther. Their definition is at lines 14–16.

Each of these processes is actually guarded by the ant’s

current position: for instance, Next0 can only proceed

when the ant is at node 0 (i.e., the nest). In this case,

the ant updates its position based on the concentration

of pheromone in each potential destination. If the two

concentrations are different enough (i.e., one is at least

δ units more than the other, where δ is an external pa-

rameter)the ant will always move towards the higher

concentration. Otherwise, the ant nondeterministically

selects one of the two nodes 1 and 2. We omit the defi-

nition of Next4 for the sake of brevity, as it is similar

to that of Next0. NextOther, on the other hand, is

activated when an agent is in positions 1, 2, or 3 (i.e.



Modelling Flocks of Birds and Colonies of Ants from the Bottom Up 7

Listing 8: Baseline agent modelling.

1 agent Ant {
2 interface =
3 pos: 0..λ;
4 dir: [−1, 1]
5

6 Behavior = Move; Behaviour

7 Move = {
8 desPos := pos+ dir;
9

10 pos← desPos if 1 ≤ desPos ≤ λ else
11 −1 if desPos < 0 else λ+ 2
12 }
13 }

along one of the paths, and not at the nest or food

source). In this case, the agent simply continues along

its direction with no possibility of reversal.

After moving to another node, the agent drops a

unit of pheromone at the new location, as shown in

line 27. Finally, the ant repeats its behaviour from the

beginning.

2.3 Ants on a bar

In this Section we describe the example proposed by

Fettke at al. in [23], where a group of ants moves back

and forth on a one-dimensional bar.

Description of an ant. Each ant of the group may

be characterised by two distinct attributes: its position

and its direction. The former is denoted by a coordinate

pos, which represents the ant’s location along the bar.

The latter is described using an integer dir.

In Listing 8 (lines 2–4), these attributes are ini-

tialised non-deterministically. Specifically, each ant may

assume any position on a bar with a length of λ, i.e.

from 1 to λ inclusive. Additionally, the direction at-

tribute is initialised using a random selection from one

of two possible values: 1, indicating that the ant will

move to the right, or −1, indicating that the ant will

move to the left.

Behaviour of an ant. We initially focus on a straight-

forward system in which an ant moves in accordance

with its direction and falls off the edge when it reaches

it. Several ants can currently move side by side.

In Listing 8, lines 7–12 describes this simple be-

haviour. Please note that it is defined again recursively

as shown in line 6. It outlines that each agent continu-

ously executes the actions defined in the Move process.

More comprehensively, an agent initially considers the

desired position to which it will move, dependent upon

its current location and direction. The process for up-

dating this position is presented in lines 10–11. It should

Listing 9: Collision.

1 system {
2 ...
3 environment = collide[λ] : 0; bar[λ] : 0..N
4 }
5

6 agent Ant {
7 interface = . . .
8

9 Behavior = Move; Behaviour

10 Move = {
11 dir← −dir if collide[pos] = 1 else dir;
12 collide[pos]⇐ 0;
13

14 desPos := pos+ dir;
15 dirDpos := 0 if bar[desPos] = −1
16 else dirbar[desPos];

17 collide[desPos]⇐ 0 if dirDpos = dir else 1;
18

19 bar[pos]⇐ −1;
20 dir ← 0 if (desPos < 1 ∨ desPos > λ) else

21 dir if dirDpos = dir else − dir;
22 pos← 0 if desPos < 1 else

23 λ+ 2 if desPos > λ else

24 desPos if bar[desPos] = −1 else pos;
25 bar[pos]⇐ id
26 }
27 }

be noted that if an agent continues to move along the

bar, there are no issues (line 10). However, if an agent

reaches the left-hand edge, it is relocated to position

−1, which is outside the bar, while if an agent reaches

the right-hand edge, it is positioned at position λ + 2,

which is again outside the bar (line 11).

Collisions. Let us now refine the description of ant

behaviour to obtain the one presented in the original

example [23]. An ant, as before, can move forward or

backward along the bar. Two ants walking towards each

other, will eventually collide. Upon collision, both ants

reverse their direction and continue along the bar. It

is important to note that ants cannot share the same

position or overtake other ants. Finally, when an ant

reaches the edge, it falls.

Listing 9 presents the behaviour described above.

It contains several sections. In lines 1–4 we define a

shared array collide, initialised with zeroes, which en-

ables the signal of a collision to travel from one agent

to another. Additionally, we initialize a shared array

called bar, which stores the ids of the agents based on

their position on the bar. The behaviour of an ant agent

is described in lines 9–26. It is defined recursively, with

each agent repeatedly performing the Move process.

The latter can be divided into three parts. In the first

part (lines 11–12), the ant checks whether another one

has previously collided with it by examining whether

the collide array is set to 1. If a collision has occurred,



8 Rocco De Nicola et al.

the ant immediately changes its direction and then re-

moves the occurrence from the array of collisions by

setting it back to 0. It is important to note that the as-

signments to shared variables are denoted by the sym-

bol ⇐ to distinguish them from other kinds of assign-

ment seen so far. In the second part (lines 14–17), the

agent checks whether the position of the bar it wishes to

move to is already occupied. If it is, the agent examines

the direction of the agent occupying that spot (line 16).

Moreover, if the position is occupied and the agent is

moving in the opposite direction, it records a collision

occurrence in the collide array. In the third and final

part (lines 19–25), the agent first removes its own po-

sition on the bar. Then, the direction and position are

updated, taking into consideration both the case where

an ant is on the edge of the bar and the case where a

collision has occurred. Finally, the new position on the

bar is updated.

3 Analysis results

In this section, we analyse the three examples described

in Section 2, both exhaustively and through simula-

tion. We performed all the experiments in a virtualized

environment on a dedicated machine running 64-bit

GNU/Linux with kernel 5.4.0 and equipped with four

2-GHz Xeon E7-4830v4 10-core processors and 512 GB

of physical memory.

3.1 Flock of birds

In this subsection, we investigate whether the current

specifications of the flock model enable it to maintain its

cohesion when threatened by a predator. To test this,

we set up an experiment where all birds start from ran-

dom positions in a small area, and a predator bird flies

through the centre of this area, posing a threat to the

flock. Our objective is to demonstrate that the preda-

tor’s attack disrupts the cohesion of the flock, causing

it to scatter. However, we also aim to show that the

flock can effectively reorganize itself and regroup once

the predator leaves, demonstrating the effectiveness of

the model in mimicking complex emergent behaviour.

In our experiment, we consider an arena modelled as

a 1024×1024 square, within which all agents are placed.

However, if the birds were allowed to assume any posi-

tion within the arena, they could be widely scattered.

Therefore, we initialize the flock with the birds starting

close to each other, which is a more realistic starting

position for an unperturbed flock. To ensure diversity,

we also prevent the birds from starting at the same po-

sition as others or from being stationary, which means

Listing 10: Constraints.

1 assume {
2 GridCentre = forall Bird b,
3 xb > 490 and xb ≤ 510 and

4 yb > 490 and yb ≤ 510
5 DifferentPositions = forall Bird a, forall Bird b,
6 a = b or xa ̸= xb or ya ̸= yb2
7 DirectionNotNull = forall Bird b,
8 dirxb ̸= 0 or diryb ̸= 0
9 }

Listing 11: Predator specifications.

1 agent Predator {
2 interface =
3 x: 480;
4 y: 480;
5 dirx: 3;
6 diry: 3
7

8 Behaviour = Move; Behaviour

9 Move = {
10 x← x+ dirx;
11 y← y+ diry
12 }
13 }

having a null heading vector. By imposing these con-

straints, we can ensure that our simulation begins with

a realistic initial configuration, which closely approxi-

mates the behaviour of a real flock of birds.

Listing 10 shows how to model these initial con-

straints. These are listed in a new section of the spec-

ifications titled assume, where each constraint is ex-

pressed through a quantified predicate, as seen in Sec-

tion 2. Lines 2–4 establish that birds can only be placed

in a 20× 20 sub-grid at the centre of the arena, which

guarantees that they will not be too far apart. It is

worth noting that the flock will never reach the edges

of the arena due to this initial configuration and the lim-

ited number of steps that will be analysed. To prevent

two agents from starting at the same position, lines 5–6

state that two agents cannot assume the same initial

position. Lastly, line 7 prescribes that every bird must

have a non-null heading vector.

The predator agent is specified in Listing 11. The

predator features the same attributes as the birds in

the flock, i.e., a position (x, y) and a heading vector

(dirx, diry). To ensure that the predator intersects the

flock, it is given a very simple behaviour such that it

moves in a straight line along its initial heading vec-

tor. The initial position and the heading vector of the

predator are given determined values in lines 3–6. The

predator is given a longer heading vector than those of

flock birds to model the fact that it moves faster. The

predator’s behaviour is shown at lines 8–12 and is ex-



Modelling Flocks of Birds and Colonies of Ants from the Bottom Up 9

Listing 12: Specifying a cohesion requirement.

1 check {
2 Cohesion = after B forall Bird a, forall Bird b,
3 a = b or d((xa,ya), (xb,yb)) ≤ k

4 }

actly like the one seen in Listing 1, modelling movement

in a straight line.

Our goal here is to investigate the cohesion of a flock

after a predator attack. Specifically, we aim to examine

whether the distance between birds increases as they

flee from the predator and whether this distance re-

turns to its previous level after the predator departs.

This property is formalized in the check section of our

specifications, as illustrated in Listing 12. The property

is described in line 3, where the after B modality in-

dicates that the maximum distance between any two

birds should not exceed a given parameter k, B steps

after the initial state. In LTL [39], this construct can be

expressed as a sequence of B “next” operators denoted

as XB .

In order to assess the ability of our flock to exhibit

the desired behaviour, we employed a simulation work-

flow (see Fig. 3) that quickly generates random traces

of our specification. The workflow was implemented in

SLiVER,4 a language originally aimed at formal verifi-

cation of collective adaptive systems [16,17].

Our approach involves encoding the specifications

into a sequential imperative program [16]. Tools for

reachability analysis are then used to generate one or

more random traces of a desired length. More specifi-

cally, a simulation of length B for a given system can

be obtained by encoding the system as a program that

keeps track of the number of executed system steps in

a specific variable steps, and then by checking that

all reachable states have steps < B.5 The main is-

sue with this approach is that most reachability tools

are deterministic, so we would always obtain the same

simulation. To address this issue, we use as our back

end a SAT-based bounded model checker [10] together

with a randomized solver, so that the same reachabil-

ity query may produce different counterexamples (each

corresponding to a feasible simulation of our system).

These traces are subsequently translated into the spec-

ification syntax and presented to the user. Also, these

traces provide valuable information about the satisfac-

tion of properties within the specification.

In order to enhance the efficiency of our simulation

workflow, we use a concretization step that is performed

4 https://github.com/labs-lang/sliver/
5 Of course, here we are assuming that the system does not

always deadlock in less than B steps.

Table 1: Parameters in the model presented in Listing 5

and their values used in the simulation process.

Name Description Value

B Bound for the cohesion property 600
D Maximal absolute value of heading

vector components for birds
2

G Size of the arena 1024
δ Isolation distance 32
λ Safe distance from predator 32
ν Used to estimate the future position

of the predator
2

ω Used to estimate the future position
of the bird to approach

14

k Maximal distance to satisfy the co-
hesion property

0− 40

Number of Bird agents 29
Number of Predator agents 1

prior to feeding the program to the back end. This steps

randomly picks feasible concrete values for a number

of symbolic variables in the emulation program (e.g.,

the ones representing the initial state of the system or

the choices made by the scheduler), and then preloads

these values into the back end as weak assumptions.

The back end will try to honour all weak assumptions,

but it is free to drop one or more if the reachability

query would be otherwise unsatisfiable. This approach

seems effective in speeding up the back end.

The parameters and values used in our models and

simulations, as well as the composition of the system,

are summarized in Table 1. Notably, we use B both

as the bound of the cohesion property and as the de-

sired length of our simulations. Our simulations assume

round-robin scheduling, meaning that each trace con-

sists of a sequence of epochs in which each agent per-

forms exactly one action. It is important to note that

in this context, an atomic block is considered a single

action. While this assumption is demanding, we find it

reasonable when modeling real-world systems. Further-

more, it is much weaker than the implicit synchrony as-

sumptions made in other models, such as those found

in [42,2]. These models require all agents to evolve in

lockstep, meaning that the future state of individual

agents depends on the current state of the entire sys-

tem, and state changes happen simultaneously for all

agents.

The experimental outcomes are depicted in Fig. 4.

The x-axis of the plot denotes the cohesion coefficient,

k, which was varied from 0 to 40, representing the max-

imum separation distance between the two elements

in their initial configuration. The y-axis represents the

percentage of traces that were found to satisfy the cohe-

sion property. Each data point on the plot corresponds

https://github.com/labs-lang/sliver/


10 Rocco De Nicola et al.

Specifications

Execution bound

Frontend Encoder Concretizer Back end

TranslatorExecution trace

Emulation
program

Concretized
program

Fig. 3: Workflow to simulate our specifications.

Fig. 4: Percentage of traces satisfying the property in

Listing 12 as k varies.

to 1000 simulations. In the graph, a sharp decline in the

number of traces that satisfy the property is observed.

The visual representation of a trace generated by

our simulation process is presented in Fig. 5. The birds

are depicted by triangles that point towards the direc-

tion of their heading vector, and the predator is de-

picted as a larger, red triangle with a black outline. It is
important to note that in this trace, the birds are never

in the same position, and any overlapping triangles are

a visual artefact. As expected, the trace demonstrates

that the predator’s attack causes some dispersion in the

flock as the birds attempt to evade the threat. However,

the birds are eventually able to regroup and reorient

themselves coherently, thereby satisfying the property

we specified in Listing 12. It is worth mentioning that

our simulation workflow proved useful during the spec-

ification process as it helped us realize the potential for

flock dispersion in Listing 3, which led to the develop-

ment of the more refined Listing 4.

Independent replication. The main findings about

the collective behaviour of this model have been repli-

cated [44] by reimplementing the model with Python

and the Mesa agent-based modelling library.6 The in-

dividual behaviour for flocking birds and the predator

have been manually translated from LAbS to Python;

6 https://github.com/projectmesa/mesa/

Listing 13: Specifying the shortest path prop-

erty.

1 check {
2 Shortpath = after B forall Ant a,
3 posa = 0 ∨ posa = 1 ∨ posa = 4
4 }

then, 10 simulations have been run featuring 600 epochs,

100 flocking birds, and 1 predator. All simulations show

that the flock is able to reattain cohesion after being

disrupted by the bird of prey.

3.2 Pathfinding ants

In this Section, we investigate the path choices of an

ant colony during food search and transport.

In particular, our goal is to show that if the ants

have two paths of different lengths available that lead

from the nest to the food, they tend to choose the short-

est path and gradually abandon the longer one. More

in detail, we want to show that after a certain amount

of time has passed, the ants will be located exclusively

in the nest, on the shortest path, or at the food source.

This property is formalized in the check section of the

specifications and is illustrated in Listing 13. The prop-

erty described in lines 2–3 asserts that, after B steps

from the initial state, the nodes where any ant is lo-

cated are 0, the nest, 1, the shortest path, or 4, the

location of the food.

The exhaustive verification of the described prop-

erty against such a system gives a negative result. A

trivial counterexample is given by the case in which

each ant in the system initially chooses the longest path

to explore. In this case, the amount of pheromone on

the short path will remain zero. Once the ants have

to choose the path for the return, none of them will

consider the short path. However, this counterexample

appears to be unrealistic. As demonstrated in numerous

experiments [26,21,19], ants initially tend to distribute

themselves evenly along each branch and do not all clus-

ter on a single branch.

The experimental setup we present involves simu-

lating the system a certain number of times, extracting

https://github.com/projectmesa/mesa/


Modelling Flocks of Birds and Colonies of Ants from the Bottom Up 11

Fig. 5: A trace generated through simulation. The predator is the red triangle with black outline.

Table 2: Parameters in the model described in Listing 7

and their values.

NameDescription Value

N Number of Ant agents 10, 15, 20, 25
δ Pheromone difference threshold N, N/2, N/4
γ Quantity of pheromone dropped 1

traces, and checking whether each of them satisfies the

given property or not.

The simulation process resembles that presented in

Section 3.1 and it is shown in Figure 3. The only no-

table difference is that the initial concretization step, in

which each non-deterministic assignment is replaced by

a randomly selected concretized value, no longer cov-

ers the choice of the initial state, as this is now de-

terministic. The concretization process is now applied

to the choices made by the scheduler and to the inter-

nal choices of each agent’s behaviour, i.e. when it must

choose one of the two paths to follow and both can be

selected.

In Table 2, we show the parameters used during

the simulation phase. In Table 3 we present the results

obtained. For each combination of the parameters, we

perform 1000 simulations. Note that the parameter γ,

which we set to 1 for each simulation, does not ap-

pear among the parameters in Table 3. In Figure 6, we

represent the results graphically. As expected, as the

(a) Number of agents: 10 (b) Number of agents: 15

(c) Number of agents: 20 (d) Number of agents: 25

Fig. 6: Percentage of simulations that satisfied the prop-

erty in Listing 13.

number of epochs increases, an increasingly number of

simulations satisfy the described property. Note that,

despite the increasing trend for each system and each

δ considered, the growth is faster when δ is equal to

half of the agents in the system. Since the ants dis-



12 Rocco De Nicola et al.

Table 3: Simulation results for the pathfinding ants sys-

tem. B is the number of epochs. Sat is the percentage

of simulations in which the property is satisfied.

(a) N = 10.

δ B Sat (%)
10 10 6.0
10 15 10.5
10 20 19.0
10 25 28.5
5 10 14.5
5 15 26.0
5 20 45.5
5 25 48.5
3 10 25.5
3 15 38.0
3 20 56.5
3 25 59.0

(b) N = 15.

δ B Sat (%)
15 10 1.5
15 15 5.0
15 20 21.5
15 25 35.5
8 10 11.0
8 15 29.5
8 20 78.5
8 25 84.0
4 10 28.0
4 15 49.0
4 20 63.0
4 25 66.5

(c) N = 20.

δ B Sat (%)
20 10 1.0
20 15 7.0
20 20 24.0
20 25 44.5
10 10 7.0
10 15 36.0
10 20 64.0
10 25 78.0
5 10 31.0
5 15 58.0
5 20 71.0
5 25 75.0

(d) N = 25.

δ B Sat (%)
25 10 0.0
25 15 12.0
25 20 36.0
25 25 52.0
12 10 12.0
12 15 40.0
12 20 64.0
12 25 77.0
6 10 30.0
6 15 67.0
6 20 62.0
6 25 70.0

tribute themselves uniformly along each possible path

and since they have to choose between two paths, it

seems reasonable that the presence of half of the colony

on one of the paths is a reasonable threshold to deter-

mine which path to follow.

In conclusion, the visualization of a trace gener-

ated by the simulation process is shown in Fig. 7. The

node on the left represents the nest, while the one on

the right represents the food source. The top path is

the shortest and can be covered in a single movement,

while the bottom path represents the longer path that

requires two movements to be covered. The ratio be-

tween the lengths is therefore 2. As expected, the trace

shows that, starting from an initial state where the level

of pheromone on both paths is zero, the ants initially

distribute themselves almost uniformly on both paths.

However, after a certain amount of time, the colony be-

gins to show a preference for the shortest path, until

the choice becomes dominant. This behaviour is rep-

resented by the colour gradient, which expresses the

amount of pheromone present on the path segment.

Table 4: Parameters in our model and their values.

Name Description Value

λ Length of the bar 12
Number of Ant agents 6

Listing 14: Constraints.

1 assume {
2 Position = forall Ant a, forall Ant b,
3 (ida < idb ∨ posa ≥ posb) ∧
4 (ida ≥ idb ∨ posa < posb)
5

6 Direction0 = exists Ant a, ida = 0 ∧ dira = 1
7 Direction1 = exists Ant a, ida = 1 ∧ dira = −1
8 Direction2 = exists Ant a, ida = 2 ∧ dira = 1
9 Direction3 = exists Ant a, ida = 3 ∧ dira = 1

10 Direction4 = exists Ant a, ida = 4 ∧ dira = −1
11 Direction5 = exists Ant a, ida = 5 ∧ dira = 1
12

13 Bar = forall Ant a, (posa = bar[1] ∧ bar[1] = ida) ∨
14 (posa ̸= bar[1] ∧ bar[1] = −1)
15 . . .
16 (posa = bar[λ] ∧ bar[λ] = ida) ∨
17 (posa ̸= bar[λ] ∧ bar[λ] = −1)
18 }

3.3 Ants on a bar

In this section, we illustrate how exhaustive verification

can be leveraged to reason about the event ordering of

a concurrent system. By using the example proposed by

Fettke et al. in [23], our goal is to demonstrate how it

is feasible to construct a directed graph that describes

the (partial) order of ant collisions and bar falls, using

the agent behaviour specifications.

We define the initial state of the system as described

in [23]. Table 4 presents the parameters utilized during

the verification phase. Additionally, we impose the ini-

tial conditions presented in Table 14. These ensure that

the ants are positioned exactly as in the considered ini-

tial state. Specifically, in lines 2–4, we enforce that the

ants are directed according to their implicitly assigned

id. In lines 6–11, we assign the initial directions, which

again resemble those of the system presented in the pa-

per. Finally, in lines 13–17, we initialize each position

of the bar with the id of the ant located on it.

We now demonstrate how to save a collision or a

fall event of an ant from the bar. To achieve this, it is

necessary to modify the specifications of the system and

the ants, which are provided in Listing 9 in Section 2.

It is worth noting that the modifications we introduce

do not affect the behaviour of an ant, but are only for

event logging purposes.

The updated specifications are shown in Listing 15.

In detail, we define a shared array that will contain the

events and a counter that will allow us to write to the



Modelling Flocks of Birds and Colonies of Ants from the Bottom Up 13

Fig. 7: Visualization of a simulated trace for the pathfinding ants system. The circles represent the nest (on the

left) and the food source (on the right). The upper branch represents the shortest path, i.e. node 1 of Fig. 2. The

lower branch is divided into two identical sections that respectively represent nodes 3 and 4 of Fig. 2. Colours

denote the concentration of pheromone on each path.

Listing 15: Events logs.

1 system {
2 . . .
3 environment = events[100] : 0; counter : 0
4 }
5

6 agent Ant {
7 interface = . . .
8

9 Behavior = Move; Behaviour
10 Move = {. . .
11 events[counter]⇐
12 id · 100 if desPos = 0 ∨ desPos = λ+ 1 else

13 (id−1) ·10+ id if dir = −1 ∧ dirDpos = 1 else
14 id·10+(id+1) if dir = 1 ∧ dirDpos = −1 else

15 −1
16

17 counter⇐ counter if events[counter] = −1 else

18 counter+ 1
19 . . .
20 }
21 }

array (line 3). The array is initialized with the value

−1. Before updating their direction and position, each

agent, if necessary, records an event. In line 12, a fall

from the bar by one of the agents is recorded. This event

is coded as a multiple of 100. For example, the value 200

indicates that the agent with id 2 has fallen. In line 13,

a collision is recorded. The id of the agent on the left is

found in the tens place, while the id of the agent on the

Listing 16: Specifying the consequences prop-

erties.
1 check {
2 Fallen = after B forall Ant a, posa < 1 ∨ posa > λ

3

4 Consequence = after B $consequence(E1, E2)
5 }

right is found in the ones place. For example, the event

45 corresponds to a collision between agents 4 and 5.

In all other cases, the value of the array is not updated.

Finally, the counter is only incremented if the value has

been modified.

We now focus on verifying the ordering of events in

our system. In order to do so, we first need to know

the number of steps after which all ants inevitably fall

off the bar (so, no other collision is possible after that).

It is clear that such a value should exist, but it is not

known in advance; however, we van find it by applying

formal verification to our system. However, we can find

this value by applying formal verification. To do so,

we formalize the property “after B steps, every ant has

fallen from the bar” (Listing 16, line 2). Then, we verify

this property several times with increasing values of B,

until it is verified. Once we obtain a successful outcome

for some value B∗, we know that all events take place

in the first B∗ steps of every execution.



14 Rocco De Nicola et al.

12 45

1 34 5

6

423

2 3

Fig. 8: The events with a single digit denote that the

agent with the corresponding id has fallen from the bar.

The events with two digits are collisions between the

agents with the corresponding ids.

Now, we can check if a given event E1 is inevitably

preceded by another one E2 (Listing 16, line 4).7

By verifying all possible combinations of all events

while using a verification bound at least as great as

B∗, it is possible to construct a directed graph that

describes the (partial) order of collisions and falls. If

it is verified that event E1 is a consequence of event

E2, then in the event graph, E1 precedes E2. If, on the

other hand, this is not verified, the order of the two

events is inverted. If the reversed order is verified E1

follows E2 in the event graph, otherwise, it means that

the two events are not comparable and do not depend

on each other. We performed 23 verification tasks, and

obtained the graph shown in Fig. 8. This graph closely

replicates the ordering of events outlined in the original

presentation of the system [23, Fig. 7], but interestingly

we obtain it in a fully automated fashion, rather than

by manually reasoning on the specifications.

4 Related work

Modelling of flocking behaviours in the literature relies

on different approaches, including equational modelling

through techniques such as differential equations [52],

discrete-time dynamics [2,42], or statistical mechan-

ics [6]; decentralized control laws, either defined ad-

hoc [54] or synthesized from a centralized controller [34];

or language-based specifications, as presented in this

work. The behaviour of ant colonies has also been stud-

ied following different approaches. For trail foraging,

techniques such as modelling through nonlinear differ-

7 The $consequence(...) syntax means that this check is
currently implemented as an external function written in C,
which compares the array indices at which E1 and E2 appear.
We plan to turn this into a feature of our property language
in an upcoming release of SLiVER.

ential equations [48,4] or practical experimentation [5,

26] have been used.

Language-based approaches offer the advantage of

facilitating the refinement and comparison of models

with minimal effort. For instance, the framework pro-

posed in [31] has been used to model various predator

tactics and versions of flocking behaviour. Simulations

have shown that flocks with more social tendencies ex-

hibit better survival rates, whereas those with individu-

alistic tendencies are more vulnerable to predation [13].

Regarding ant colonies, the Weighted Synchronous Cal-

culus of Communicating Systems (WSCCS) has been

utilized to model their activities, such as the sorting of

the brood pile [50] and task allocation [51]. It has also

been used to demonstrate how a colony responds to ex-

ternal disturbances [49]. StarLogo [41] and NetLogo [55]

are further examples of language-based, bottom-up mod-

elling frameworks; compared to our platform, they are

more oriented towards analysis through massive sim-

ulations, as they can handle hundreds of agents with

ease. NetLogo simulations can even become interactive

by defining user interface controls to dynamically alter

model parameters as the simulation runs. However, we

are not aware of any work that applies formal verifi-

cation to StarLogo or NetLogo models: such an effort

would likely be hindered by a lack of formal semantics

for either language and by their rather dynamic nature.

Formal specification languages also enable exhaus-

tive exploration of the state space, which may pro-

vide strong guarantees on the behaviour of a system

or detect subtle bugs that may be difficult to detect

through simulations alone. For example, the alpha al-

gorithm [56], designed to induce a flock of dispersed

agents to aggregate in a small region of space, was found

to be incorrect [29,1] by verifying models of the algo-

rithm written in ISPL [33] or NuSMV [9]. Emulation

programs may similarly enable formal analysis of high-

level specifications by means of structural encodings to-

wards lower-level languages, allowing for the reuse of

different existing verification technologies [16,18].

Bottom-up and simulation-aided design is also com-

monplace in the engineering of robot swarms and simi-

lar classes of robotic systems [7]. In this context, robots

are typically programmed individually using general-

purpose languages like C++ or Python or higher-level,

domain-specific, formalisms [15,37], with possible re-

liance on existing robotic middleware like ROS [40].

The resulting programs are evaluated by simulating

the robots under one of several available simulation

platforms [28,38,43] to empirically assess whether the

swarm exhibits adequate collective behaviour.



Modelling Flocks of Birds and Colonies of Ants from the Bottom Up 15

5 Conclusion

This work has shown how compositional models can

help to reason about the individual dynamics that lead

to emergent behaviour of collectives. We presented three

models that describe the behaviour of natural systems

in a step-by-step, yet intuitive and concise manner.

By using an automated simulation workflow, we have

shown that birds split into smaller groups to avoid the

threat, before reassembling once the danger subsided.

This behavior has been observed in both real-life flocks

and in other models [2]. Using the same workflow, we

demonstrated how an ant colony is capable of selecting

the shortest path to reach a food resource. Also this

behavior has been previously observed both in real-

life scenarios and in other models [19,3,20]. Finally,

through comprehensive verification, we showed the abil-

ity to reason about the order of events in a very simple

system considered in a paper presented at the confer-

ence to which this special issue is dedicated.

In light of the promising results presented in this

paper, there are several avenues for future research in

the field of compositional modeling of natural collec-

tive behaviors. Firstly, it is important to further de-

velop and refine the simulation workflow used in this

study, as it is still in the experimental phase. Indeed,

although the workflow was successful in simulating the

model presented in Section 2, its limitations in handling

specifications that contain guarded statements need to

be addressed. These scenarios may prove difficult to

simulate, as certain concretizations may fail to satisfy

certain guards, making it impossible to generate traces

of the desired length.

To address the challenges we plan to adapt our back-

end tool to enable the modification of concretization

constraints until a valid trace is obtained.

We plan also to enhance the simulation-based ap-

proach by incorporating exhaustive state space explo-

ration techniques. This complementary method may

formally prove the emergence of expected collective be-

haviors, regardless of the initial state or the specific

interactions between agents within the system. More-

over, to achieve our goal of formal verification of the

emergence of desired collective behaviors, we propose

to adapt existing techniques based on verification of

emulation programs [16]. This adaptation may involve

extending these techniques to support expressive tem-

poral logics such as LTL [39]. To achieve this, a more

rigorous formalization of the linguistic constructs intro-

duced in Section 2 may also be necessary.

Given the cost of exhaustive analysis for large sys-

tems, we also plan to extend our simulation workflow

to enable lightweight formal methods, such as statisti-

cal model checking [45]. This approach will enable us

to obtain statistical evidence on the correctness of the

system. The ability of our framework to verify property

satisfaction relying on simulation can be considered a

rudimentary form of runtime verification [32]. We plan

to extend this capability to include larger classes of

monitorable properties [25].

Parallelization of our simulation workflow can be

easily achieved by distributing the workload among mul-

tiple machines, and we plan to investigate the possibil-

ity of implementing distributed techniques in the back

end to further improve performance [27]. These efforts

will allow us to generate a large number of traces for

massive systems. Effective visualization of the textual

traces is also crucial for supporting the design process.

While our current automated visualization tool works

well for the flocking case study (as demonstrated in

Fig. 5), we aim to build a more generic framework or in-

tegrate our workflow into existing simulation platforms

to provide a more flexible and versatile visualization

tool.

References

1. Antuña, L.R., Araiza-Illan, D., Campos, S., Eder,
K.: Symmetry reduction enables model checking of
more complex emergent behaviours of swarm navi-
gation algorithms. In: 16th Annual Conference To-
wards Autonomous Robotic Systems (TAROS), LNCS,
vol. 9287, pp. 26–37. Springer (2015). DOI 10.1007/
978-3-319-22416-9 4

2. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A.,
Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi,
G., Procaccini, A., Viale, M., Zdravkovic, V.: Interaction
ruling animal collective behavior depends on topological
rather than metric distance: Evidence from a field study.
Proceedings of the National Academy of Sciences 105(4),
1232–1237 (2008). DOI 10.1073/pnas.0711437105

3. Beckers, R., Deneubourg, J.L., Goss, S.: Trail laying be-
haviour during food recruitment in the ant lasius niger
(l.). Insectes Sociaux 39, 59–72 (1992)

4. Beckers, R., Deneubourg, J.L., Goss, S., Pasteels, J.M.,
et al.: Collective decision making through food recruit-
ment. Insectes sociaux 37(3), 258–267 (1990)

5. Bernstein, R.A.: Foraging strategies of ants in response
to variable food density. Ecology 56(1), 213–219 (1975)

6. Bialek, W., Cavagna, A., Giardina, I., Mora, T., Sil-
vestri, E., Viale, M., Walczak, A.M.: Statistical mechan-
ics for natural flocks of birds. Proceedings of the National
Academy of Sciences 109(13), 4786–4791 (2012)

7. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.:
Swarm robotics: A review from the swarm engineering
perspective. Swarm Intelligence 7(1), 1–41 (2013). DOI
10.1007/s11721-012-0075-2

8. Cederman, L.E.: Endogenizing geopolitical boundaries
with agent-based modeling. Proceedings of the National
Academy of Sciences 99 Suppl 3, 7296–7303 (2002). DOI
10.1073/pnas.082081099

9. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia,
F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella,



16 Rocco De Nicola et al.

A.: NuSMV 2: An opensource tool for symbolic model
checking. In: 14th International Conference on Computer
Aided Verification (CAV), LNCS, vol. 2404, pp. 359–364.
Springer (2002). DOI 10.1007/3-540-45657-0 29

10. Clarke, E., Kroening, D., Lerda, F.: A tool for checking
ANSI-C programs. In: 10th International Conference on
Tools and Algorithms for the Construction and Analy-
sis of Systems (TACAS), LNCS, pp. 168–176. Springer
(2004). DOI 10.1007/978-3-540-24730-2 15

11. De Nicola, R., Di Stefano, L., Inverso, O.: Multi-agent
systems with virtual stigmergy. Science of Computer Pro-
gramming 187, 102345 (2020). DOI 10.1016/j.scico.2019.
102345

12. De Nicola, R., Di Stefano, L., Inverso, O., Valiani, S.:
Modelling flocks of birds from the bottom up. In: T. Mar-
garia, B. Steffen (eds.) 11th International Symposium
on Leveraging Applications of Formal Methods, Verifica-
tion and Validation. Adaptation and Learning (ISoLA),
LNCS, vol. 13703, pp. 82–96. Springer (2022). DOI
10.1007/978-3-031-19759-8 6

13. Demsar, J., Lebar Bajec, I.: Simulated predator attacks
on flocks: A comparison of tactics. Artificial Life 20(3),
343–359 (2014). DOI 10.1162/ARTL a 00135

14. Deneubourg, J.L., Pasteels, J.M., Verhaeghe, J.C.: Prob-
abilistic behaviour in ants: a strategy of errors? Journal
of theoretical Biology 105(2), 259–271 (1983)

15. Desai, A., Saha, I., Yang, J., Qadeer, S., Seshia, S.A.:
DRONA: A Framework for Safe Distributed Mobile
Robotics. In: ICCPS (2017). DOI 10.1145/3055004.
3055022

16. Di Stefano, L., De Nicola, R., Inverso, O.: Verification
of distributed systems via sequential emulation. ACM
Transaction on Software Engineering and Methodology
31(3) (2022). DOI 10.1145/3490387

17. Di Stefano, L., Lang, F.: Verifying temporal properties of
stigmergic collective systems using CADP. In: 10th In-
ternational Symposium On Leveraging Applications of
Formal Methods, Verification and Validation (ISoLA),
LNCS, vol. 13036, pp. 473–489. Springer (2021). DOI
10.1007/978-3-030-89159-6 29

18. Di Stefano, L., Lang, F., Serwe, W.: Combining SLiVER
with CADP to analyze multi-agent systems. In: 22nd In-
ternational Conference on Coordination Models and Lan-
guages (COORDINATION), LNCS, vol. 12134, pp. 370–
385. Springer (2020). DOI 10.1007/978-3-030-50029-0 23

19. Dorigo, M., Bonabeau, E., Theraulaz, G.: Ant algorithms
and stigmergy. Future generation computer systems
16(8), 851–871 (2000)

20. Dussutour, A., Fourcassié, V., Helbing, D., Deneubourg,
J.L.: Optimal traffic organization in ants under crowded
conditions. Nature 428(6978), 70–73 (2004)

21. Dussutour, A., Nicolis, S.C., Deneubourg, J.L., Four-
cassié, V.: Collective decisions in ants when foraging un-
der crowded conditions. Behavioral Ecology and Socio-
biology 61, 17–30 (2006)

22. Emlen, J.T.: Flocking behavior in birds. The Auk 69(2),
160–170 (1952)

23. Fettke, P., Reisig, W.: Discrete models of continuous be-
havior of collective adaptive systems. In: 11th Interna-
tional Symposium on Leveraging Applications of Formal
Methods (ISoLA), pp. 65–81. Springer (2022)

24. Finkelshtein, D., Kondratiev, Y., Kutoviy, O.: Individual
based model with competition in spatial ecology. SIAM
Journal on Mathematical Analysis 41(1), 297–317 (2009).
DOI 10.1137/080719376

25. Francalanza, A., Aceto, L., Ingólfsdóttir, A.: On verifying
hennessy-milner logic with recursion at runtime. In: 6th

International Conference on Runtime Verification (RV),
LNCS, vol. 9333, pp. 71–86. Springer (2015). DOI 10.
1007/978-3-319-23820-3 5

26. Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.:
Self-organized shortcuts in the argentine ant. Naturwis-
senschaften 76(12), 579–581 (1989)

27. Inverso, O., Trubiani, C.: Parallel and distributed
bounded model checking of multi-threaded programs. In:
25th Symposium on Principles and Practice of Parallel
Programming (PPoPP), pp. 202–216. ACM (2020). DOI
10.1145/3332466.3374529

28. Koenig, N., Howard, A.: Design and use paradigms
for Gazebo, an open-source multi-robot simulator.
In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), vol. 3, pp. 2149–2154 vol.3.
IEEE (2004). DOI 10.1109/IROS.2004.1389727

29. Kouvaros, P., Lomuscio, A.: A counter abstraction tech-
nique for the verification of robot swarms. In: 29th Con-
ference on Artificial Intelligence (AAAI), pp. 2081–2088.
AAAI (2015)

30. Kuylen, E., Liesenborgs, J., Broeckhove, J., Hens, N.: Us-
ing individual-based models to look beyond the horizon:
The changing effects of household-based clustering of sus-
ceptibility to measles in the next 20 years. In: 20th Inter-
national Conference on Computational Science (ICCS),
LNCS, vol. 12137, pp. 385–398. Springer (2020). DOI
10.1007/978-3-030-50371-0 28

31. Lebar Bajec, I., Zimic, N., Mraz, M.: Simulating flocks
on the wing: The fuzzy approach. Journal of theoretical
biology 233, 199–220 (2005). DOI 10.1016/j.jtbi.2004.10.
003

32. Leucker, M., Schallhart, C.: A brief account of runtime
verification. Journal of Logic and Algebraic Program-
ming 78(5), 293–303 (2009). DOI 10.1016/j.jlap.2008.08.
004

33. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: An open-
source model checker for the verification of multi-agent
systems. Software Tools for Technology Transfer 19(1),
9–30 (2017). DOI 10.1007/s10009-015-0378-x

34. Mehmood, U., Roy, S., Grosu, R., Smolka, S.A., Stoller,
S.D., Tiwari, A.: Neural flocking: MPC-based supervised
learning of flocking controllers. In: 23rd International
Conference on Foundations of Software Science and Com-
putation Structures (FoSSaCS), LNCS, vol. 12077, pp. 1–
16. Springer (2020). DOI 10.1007/978-3-030-45231-5 1

35. Monmarché, N., Venturini, G., Slimane, M.: On how
pachycondyla apicalis ants suggest a new search
algorithm. Future Generation Computer Systems
16(8), 937–946 (2000). DOI https://doi.org/10.1016/
S0167-739X(00)00047-9

36. Olfati-Saber, R.: Flocking for multi-agent dynamic sys-
tems: Algorithms and theory. IEEE Transactions on Au-
tomatic Control 51(3), 401–420 (2006). DOI 10.1109/
TAC.2005.864190

37. Pinciroli, C., Beltrame, G.: Buzz: An extensible pro-
gramming language for heterogeneous swarm robotics.
In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3794–3800. IEEE
(2016). DOI 10.1109/IROS.2016.7759558

38. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy,
A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro,
G., Ducatelle, F., Birattari, M., Gambardella, L.M.,
Dorigo, M.: ARGoS: A modular, parallel, multi-engine
simulator for multi-robot systems. Swarm Intelligence
6(4), 271–295 (2012). DOI 10.1007/S11721-012-0072-5

39. Pnueli, A.: The temporal logic of programs. In: 18th
Annual Symposium on Foundations of Computer Science



Modelling Flocks of Birds and Colonies of Ants from the Bottom Up 17

(FOCS), pp. 46–57. IEEE (1977). DOI 10.1109/SFCS.
1977.32

40. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,
Leibs, J., Berger, E., Wheeler, R., Ng, A.Y.: ROS: An
open-source robot operating system. In: ICRA Workshop
on Open Source Software (2009)

41. Resnick, M.: Turtles, Termites, and Traffic Jams - Ex-
plorations in Massively Parallel Microworlds. MIT Press
(1998)

42. Reynolds, C.W.: Flocks, herds and schools: A distributed
behavioral model. In: Proceedings of the 14th An-
nual Conference on Computer Graphics and Interac-
tive Techniques, SIGGRAPH 1987, Anaheim, California,
USA, July 27-31, 1987, pp. 25–34. ACM (1987). DOI
10.1145/37401.37406

43. Rohmer, E., Singh, S.P.N., Freese, M.: V-REP: A
versatile and scalable robot simulation framework.
In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1321–1326. IEEE
(2013). DOI 10.1109/IROS.2013.6696520

44. Scheibe, V.: Introduction and replication of a bird flock-
ing behavior simulation. Zenodo (2023). DOI 10.5281/
ZENODO.8228783. URL https://zenodo.org/record/

8228784
45. Sen, K., Viswanathan, M., Agha, G.: Statistical model

checking of black-box probabilistic systems. In: 16th In-
ternational Conference on Computer Aided Verification
(CAV), LNCS, vol. 3114, pp. 202–215. Springer (2004).
DOI 10.1007/978-3-540-27813-9 16

46. Shi, H., Wang, L., Chu, T.: Flocking of multi-agent
systems with a dynamic virtual leader. International
Journal of Control 82(1), 43–58 (2009). DOI 10.1080/
00207170801983091

47. Stiglitz, J.E., Gallegati, M.: Heterogeneous interacting
agent models for understanding monetary economies.
Eastern Economic Journal 37(1), 6–12 (2011). DOI
10.1057/eej.2010.33

48. Sumpter, D.J., Beekman, M.: From nonlinearity to op-
timality: pheromone trail foraging by ants. Animal be-
haviour 66(2), 273–280 (2003)

49. Sumpter, D.J., Blanchard, G.B., Broomhead, D.S.: Ants
and agents: A process algebra approach to modelling
ant colony behaviour. Bulletin of Mathematical Biology
63(5), 951–980 (2001). DOI 10.1006/bulm.2001.0252

50. Tofts, C., Hatcher, M., Franks, N.: The autosynchroniza-
tion of the ant leptothorax acervorum (fabricius): theory,
testability and experiment. Journal of theoretical biology
157(1), 71–82 (1992)

51. Tofts, C.M.N.: Describing social insect behaviour using
process algebra. Transaction of the Society for Computer
Simulation 9, 227 (1992)

52. Toner, J., Tu, Y.: Flocks, herds, and schools: A quantita-
tive theory of flocking. Physical Review E 58(4), 4828–
4858 (1998). DOI 10.1103/PhysRevE.58.4828

53. Traniello, J.F.: Foraging strategies of ants. Annual review
of entomology 34(1), 191–210 (1989)

54. Vásárhelyi, G., Virágh, C., Somorjai, G., Tarcai, N.,
Szörényi, T., Nepusz, T., Vicsek, T.: Outdoor flock-
ing and formation flight with autonomous aerial robots.
In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3866–3873. IEEE
(2014). DOI 10.1109/IROS.2014.6943105

55. Wilensky, U.: Modeling nature’s emergent patterns with
multi-agent languages. In: EuroLogo (2001)

56. Winfield, A.F.T., Liu, W., Nembrini, J., Martinoli, A.:
Modelling a wireless connected swarm of mobile robots.
Swarm Intelligence 2(2-4), 241–266 (2008). DOI 10.1007/
s11721-008-0018-0

https://zenodo.org/record/8228784
https://zenodo.org/record/8228784

	Introduction
	Specification
	Analysis results
	Related work
	Conclusion

