
Multi-Agent Systems with Virtual StigmergyI

Rocco De Nicolaa, Luca Di Stefanob,∗, Omar Inversob

aIMT School for Advanced Studies, Lucca, Italy
bGran Sasso Science Institute (GSSI), L’Aquila, Italy

Abstract

We introduce a simple language for multi-agent systems that lends itself to intuitive
design of local specifications. Agents operate on (parts of) a decentralized data struc-
ture, the stigmergy, that contains their (partial) knowledge. Such knowledge is asyn-
chronously propagated across local stigmergies. In this way, local changes may influence
global behaviour. The main novelty is that our interaction mechanism combines stigmer-
gic interaction with attribute-based communication. Specific conditions for interaction
can be expressed in the form of predicates over exposed features of the agents. Addition-
ally, agents may access a global environment. After presenting the language, we show
its expressiveness by considering some illustrative case studies. We also include prelim-
inary results towards automated verification via a mechanizable symbolic encoding that
enables us to exploit verification tools developed for mainstream languages.

1. Introduction

Multi-agent systems are collections of autonomous agents that operate according
to some local rules and a limited mutual awareness. They are a convenient formalism
for representing several classes of complex systems and can support formal reasoning
about them. An issue that arises when considering a multi-agent system is how to
determine whether a global property of interest emerges from the combination of the
local behaviours of the different individual agents. The availability of a formal descrip-
tion of a multi-agent system allows one to apply automated verification techniques
and can be instrumental for obtaining strong guarantees about its global behaviour.
Simulation-based approaches, on the other hand, may be more effective when dealing
with larger multi-agent systems, due to the considerably large state spaces resulting
from their distributed and asynchronous nature. Therefore, the two approaches should
be considered complementary to each other.

In this paper, we introduce a language for describing multi-agent systems that
lends itself to an intuitive design of local specifications and that can be used as the

IWork partially funded by MIUR project PRIN 2017FTXR7S IT MATTERS (Methods and Tools for
Trustworthy Smart Systems).
∗Corresponding author.
Email address: luca.distefano@gssi.it (Luca Di Stefano)

Preprint submitted to Elsevier May 6, 2020

basis for automated analysis. The language, which we call LAbS for Language with
Attribute-based Stigmergies, is simple yet versatile enough to model several interesting
classes of systems. It combines stigmergic interaction [1, 2] with attribute-based
communication [3]. A key concept of the language is that of virtual stigmergy, a
distributed data structure that can model global knowledge. Each agent operates only on
his local copy of the stigmergy, that stores his own (partial) knowledge of the system.
Individual knowledge is then asynchronously propagated across other local stigmergies.
Thus, changes by an agent may indirectly affect the behaviour of another.

In the originally proposed version of the virtual stigmergy [4], agents are concrete
entities, each at a specific position in space, that can communicate across the stigmergy
only if they are within a given distance from each other. To increase expressiveness, we
generalise stigmergic interaction to arbitrary predicates overexposed features, referred
to as attributes, of the agents. In fact, our language has no explicit concept of position
for agents, and thus of neighbourhood. An agent can have instead local attributes, and
predicates over these attributes can express the conditions for two agents to be allowed
to exchange knowledge. Movement is no longer seen as a specific action; an agent may
update the attribute that encodes its position by performing a standard update action.

The generalisation of stigmergic interaction outlined above increases the flexibility
of the language and allows to model a wider class of systems. However, it is still not
sufficiently expressive to naturally model those classes of multi-agent systems where the
global environment plays a crucial role [5, 6]. To address this shortcoming, we extend
our language with tailored primitives to explicitly model actions on the environment.

This work extends our original presentation of the language [7] in several ways. The
new syntax and semantics support multiple stigmergies and improve the specification of
situated systems. Multiple stigmergies allow us to naturally describe further interesting
classes of systems, where agents can communicate in different ways. For instance, they
can be used to directly model multi-robot systems where robots have multiple sensors
and communication devices, and decide the equipment to use depending on specific
environmental conditions. As for situated systems, environment variables may now
directly occur in expressions and guards. This makes it easier to describe systems where
agents also interact via the environment.

New case studies have been added to those related to birds flocking, robots foraging
and opinion formation considered in [7]. To vindicate the flexibility of our language
and its ability of expressing different interesting classes of systems, in this paper we
also model Boids [8], and population protocols [9, 10]. The former is a widely-used
model of flocking behaviour as observed in different classes of natural systems. It
extends the flocking case study by allowing additional interaction strategies, for getting
closer and avoiding collisions, and not only for moving in the same direction. The
latter are a type of gossip protocols that rely on a distributed communication paradigm
inspired by the spreading of epidemics and by the gossip phenomenon observed in
social networks. For both classes of systems, we do provide experimental results about
their automated analysis. Our modelling of Boids systems shows the benefits of adding
multiple stigmergies to the language and, to the best of our knowledge, our work reports
the first results about formal verification of such systems; previous investigations only
exploited simulation-based techniques.

The rest of the paper is organized as follows. In Section 2 we present a revised

2

version of the formal semantics of the core language, allowing us to define systems where
agents interact indirectly through multiple stigmergies. In Section 3 we demonstrate the
features of the language by modelling the Boids system, and include preliminary results
about its automated analysis together with a discussion about the impact on verification
of the different parameters of the specified system and of the used verification tools. In
Section 4 we further enrich the language with environment-oriented primitives and show
how LAbS can naturally model other classes of systems dealing with robot foraging,
opinion formation and gossiping. In Section 5 we summarise our main achievements,
compare our work with others, and suggest directions for future research.

2. The LAbS language

In this section we introduce LAbS (Language with Attribute-based Stigmergies), a
language that has been designed to program multi-agent systems (MAS). The interac-
tion mechanisms of LAbS are inspired by the specific form of stigmergic interaction
originally proposed with the Buzz language [1] that we generalise by exploiting attribute-
based communication as introduced in [3].

A key concept of LAbS is the virtual stigmergy, a distributed data structure that
models the global knowledge of the system. Each agent maintains a local copy of (part
of) this data structure, that contains his own (partial) knowledge of the system. We call
these copies local stigmergies. An agent reads from and writes to his local stigmergy
only. Knowledge is silently and asynchronously propagated across local stigmergies.
This way, indirect agents interaction is achieved.

Formally, local stigmergies L ∈ L are partial functions that map keys to timestamped
values: L = KL ↪→ V × N, where KL andV are the sets of allowed keys and values,
respectively. We use natural numbers to represent timestamps. If (x, v, t) ∈ L, we
say that v is the value of x and that t is its timestamp in the local stigmergy L. We
refer to these as value(L, x) and time(L, x), respectively. We write L(x) = ⊥ whenever
∀v.∀t.(x, v, t) 6∈ L.

The operations on the stigmergy and the propagation mechanism are the following.
When an agent writes a key-value pair into his local stigmergy, a timestamp is retrieved
from a global clock and bound to the pair. If the local stigmergy contains an entry
with the same key, it is replaced by the new one. The new data is then automatically
(though asynchronously) propagated to its neighbours. For agents in the neighbourhood
that already have a value bound to the same key but with a newer timestamp, the
propagation has no effect; all the other agents update their local stigmergy, and in turn,
propagate the new value. In the long run, this process allows information to be spread
throughout the system. Conversely, each time an agent reads from its local stigmergy,
a key confirmation request is sent to the neighbourhood to confirm whether the data
just accessed is up-to-date. This will, in turn, trigger the propagation of more recent
information from the local stigmergies nearby, the update of any older entries, and again
their propagation.

Insertion of a value in a local stigmergy is a function ⊕ : L × (KL ×V × N) −→ L
defined as the smallest relation that satisfies the rules in Table 1, where L[x 7→ (v, t)]
denotes the partial function L′ such that L′(x) = (v, t) and L′(x′) = L(x′) ∀x′ , x. Please
notice that the actual definition of insertion of Table 1 implies that only new values are

3

considered. A value is new if its key is missing from the local stigmergy or it has a more
recent timestamp than the existing one.

L(x) = ⊥

L ⊕ (x, v, t) = L[x 7→ (v, t)]
(add)

t > time(L, x)
L ⊕ (x, v, t) = L[x 7→ (v, t)]

(update)

t ≤ time(L, x)
L ⊕ (x, v, t) = L

(discard)

Table 1: Operations on the virtual stigmergy.

An example of stigmergic interaction is shown in Figure 1. Here, agents intend
to move by following the direction stored in the virtual stigmergy. Initially (a), two

c1

c2

(a)

c1

c2

(b)

c1

c2

qry

(c)

c1

c2

put

(d)

Figure 1: A possible evolution of a system in the presence of stigmergic interaction.

agents, c1 and c2, are moving in opposite directions. When c1 moves (b), it accesses
the stigmergy to read its own direction: therefore, it asks its neighbours if a newer
direction is available (c), and receives a more up-to-date value from c2 (d). In the figure,
the circle represents the communication range of c1, which has radius δ (b), while the
dashed arrows indicate stigmergic communication; labels query and put should be self-
explanatory. We would like to stress that these protocols are transparent to the designer
of the individual behaviour, who only needs to specify read and write operations on the
agent’s local copy of the data structure.

The above description slightly deviates from the Buzz language in a few points.
First, Buzz stigmergies are based on Lamport timestamps [11] and rely on unique agent
identifiers to break ties, which may occur when the same timestamp is used more than
once; our language is currently more limited, as it relies on a global clock (see Sect. 2.5).
Moreover, differently from Buzz, in our core language there is no explicit message
passing between agents. They can only interact via the stigmergy or the environment.
We introduced the above assumptions for the sake of simplicity and homogeneity. We
might reconsider them in future revisions of our language, depending on the target
domain. However, our calculus also generalises some of the concepts related to the
virtual stigmergies of Buzz. Most importantly, in our language the ability to exchange
information through the stigmergy is not directly constrained by spatial vicinity. In fact,
there is no explicit concept of an agent’s position at all. Rather, we rely upon local

4

properties of the agents to determine whether they are allowed to communicate.
The syntax of LAbS is described in Table 2. In expressions, we assume that v ∈ V,

x ∈ KL ∪ KI (where KI is a set of keys disjoint from KL), and � stands for any binary
operator overV (such as +,−,×. . .). In guards, ./ denotes comparison relations over
V ∪ {⊥}, namely (=, <, >). We assume that K is taken from a set of named processes.

S F a | S ‖ S Systems
aF 〈I, L, P,Zc,Zp〉 Agents
PF 0 |

√
| α | P; P | P + P | b→ P | P | P | K Processes

bF true | e ./ e | ¬b | b ∧ b | b ∨ b Guards
αF x← e | xf e Elementary actions
eF v | x | e � e Expressions

Table 2: LAbS syntax.

A system is the parallel composition of a number of agents. An agent is a 5-ple
〈I, L, P,Zc,Zp〉 where:

• I ∈ I is the interface of the agent;

• L ∈ L is the local stigmergy of the agent;

• P is a process describing the behaviour of the agent;

• Zc is the set of keys that the agent has to confirm (i.e. query);

• Zp is the set of keys that the agent must propagate.

Thus, each agent is equipped with a local stigmergy and an interface, which is a dy-
namic set of key-value pairs (attributes). Attributes can be specified in the initialization
phase and modified at runtime; they represent either a variable in the agent’s memory, or
a physical property of the agent (for instance, its position). LAbS makes no distinction
between these two kinds of information. For instance, an agent may move by updating
the attribute that represents its position. Besides, attributes can be used to determine
whether two agents are able to communicate: the user of the language can specify a
custom, attribute-based predicate that, given two interfaces, determines whether the
corresponding agents can communicate. This is an important source of flexibility, as
different means of communication for an agent can be modelled. The ability of the
agents to change their attributes at any time means that connections among agents can
be dynamically established or removed.

2.1. Processes and expressions

Processes are used to model behaviour of the agents. We present their syntax in
Table 2 and their operational semantics in Table 3. There, P and Q denote processes

5

while
√

denotes successful termination, α represents the actions used to update attributes
(x ← e) or stigmergic variables (x f e), with the result of the evaluation of an
expression, while λ is a placeholder for either

√
or α.

√
√

7−→ 0
(tick)

α
α
7−→
√ (act)

P
λ
7−→ P′

P + Q
λ
7−→ P′

(choice-l)
Q

λ
7−→ Q′

P + Q
λ
7−→ Q′

(choice-r)

P
α
7−→ P′

P; Q
α
7−→ P′; Q

(seq1)
P
√

7−→ P′ Q
λ
7−→ Q′

P; Q
λ
7−→ Q′

(seq2) P
λ
7−→ P′ K , P

K
λ
7−→ P′

(con)

P
α
7−→ P′

P | Q
α
7−→ P′ | Q

(par1)
P
√

7−→ P′ Q
λ
7−→ Q′

P | Q
λ
7−→ Q′

(par2)
P1 | P2

λ
7−→ P′

P2 | P1
λ
7−→ P′

(parcomm)

Table 3: Semantics of processes.

Below, we briefly comment on the main semantic rules for each term. The term 0
represents the idle process and thus has no corresponding semantic rule. The term

√

represents the elementary process that performs action
√

and becomes idle (tick). The
term α represent the elementary process that performs an action and terminates (act).

The term P + Q represents the nondeterministic process which can behave either as
P (choice-l) or Q (choice-r). The sequential composition of two processes is denoted by
the term P; Q, that represents the process that behaves as P until it terminates (seq1), and
if P does terminate and Q performs a transition λ to become Q′, then P; Q can perform
the same λ transition and continue as Q′ (seq2).

Recursion is modelled through named process invocation. We assume that there
exists a set of process definitions K , P, where P is a process term, named K, defined
according to the syntax of Table 2 that may contain references to K itself and to other
process constants; rule (con) amounts to saying that K can perform exactly the same
actions of the process term associated to it.

The parallel composition of processes is a process P | Q where the executions of P
and Q are interleaved (par1), and upon termination of one of the parallel components the
other continues in isolation (par2). The parallel composition operator is commutative
(parcomm).

Intuitively, the guarded process b → P can only continue as P if the guard b is
satisfied. We will formalize this rule when we introduce the semantics of agents (see
Table 7) since the evaluation of a guard depends on the state of the agent.

Expressions may contain constants, references to the value of local attributes, or
stigmergic keys. A guard may either be the true predicate, which is always satisfied, or
a comparison between two expressions. Guards can also be negated (¬b) or composed
through the conjunction and disjunction operators, ∧ and ∨.

The semantics of expressions is formalized by a semantic function E~·� (Table 4),
where I and L denote the set of all interfaces and stigmergies, respectively. We assume

6

E~·� : Expr −→ I → L ↪→V

E~v� = λ I .λL .v

E~x� =

λ I .λL . I(x) if x ∈ KI

λ I .λL .value(L, x) if x ∈ KL

E~e1 � e2� = λ I .λL .E~e1�(I,L) � E~e2� (I,L)
E~e � ⊥� = E~⊥ � e� = λ I .λL .⊥

K ~·� : Expr −→ 2KL

K ~v� = ∅

K ~x� =

{x} if x ∈ KL

∅ otherwise

K ~e1 � e2� = K ~e1� ∪K ~e2�

Table 4: Semantics of expressions.

that v ∈ V, x ∈ K ; � and ./ are the same as in Table 2. We also assume that the equality
⊥ = ⊥ holds, while all other relations ./ involving ⊥ never do. We denote with K ~·�
a function that computes the set of stigmergy keys needed to evaluate an expression.
This function is instrumental to formalize the mechanisms of virtual stigmergies. We
allow E~·� to return the undefined value ⊥, for instance, when the expression refers to
an undefined value or applies an operator to incompatible values (e.g. adding a number
to a string). With a slight abuse of notation, we will use K ~b� to denote the union of
K ~e� for all sub-expressions of a guard b.

Satisfaction of a guard b is formalized as a relation I, L |= b (Table 5). We say
that a guard b is well-defined with respect to interface I and stigmergy L if all the
sub-expressions of b refer to defined attributes and stigmergy keys (this relation is
denoted by ` in Table 6). If b is not well-defined, then it may happen that neither b nor
¬b hold. This means that the law of excluded middle is not generally valid, and this is
why, although we have conjunction and negation, we have also introduced an operator
for disjunction; b1 ∨ b2 does not have the same meaning as ¬(¬b1 ∧ ¬b2).

Well-definedness is not a strict requirement for all types of guards: satisfaction of
b1 ∨ b2 only requires at least one of the two sub-guards to hold. By defining disjunction
in this way, we allow agents to operate even though their knowledge is partial: in fact,
b1 ∨ b2 → P may enable P also when one of the sub-guards is not well-defined.

I, L |= true
I, L |= ¬b ⇐⇒ I, L ` ¬b and I, L 6|= b
I, L |= e1 ./ e2 ⇐⇒ I, L ` e1 and I, L ` e2 and E~e1� (I, L) ./ E~e2� (I, L)
I, L |= b1 ∧ b2 ⇐⇒ I, L |= b1 and I, L |= b2
I, L |= b1 ∨ b2 ⇐⇒ I, L |= b1 or I, L |= b2

Table 5: Satisfaction of guards.

7

I, L ` v
I, L ` x ⇐⇒ (x ∈ KI and I(x) , ⊥) or (x ∈ KL and value(L, x) , ⊥)
I, L ` e1 � e2 ⇐⇒ I, L ` e1 and I, L ` e2

I, L ` true
I, L ` ¬b ⇐⇒ I, L ` b
I, L ` b1 ∧ b2 ⇐⇒ I, L ` b1 and I, L ` b2
I, L ` b1 ∨ b2 ⇐⇒ I, L ` b1 and I, L ` b2

Table 6: Well-definedness of expressions and guards.

2.2. Link predicates
A link predicate is a predicate over the knowledge (i.e. interface and local stigmergy)

of two agents, describing the conditions that allow them to communicate. We assume
that each stigmergic variable x has an associated link predicate ϕx. When multiple
variables occur within the same link predicate ϕs, we say that they belong to the same
virtual stigmergy s. Two agents are neighbours with respect to stigmergy s if they satisfy
ϕs. This abstraction is useful, for instance, in the case of multi-robot systems, where
predicates allow to effectively model different sensors and capabilities for each robot.
Link predicates have the following syntax:

ϕF true | η ./ η | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ predicate
ηF v | x | η � η x ∈ KI ∪ KL expression

We denote with H~·� the semantic function of expressions η. We omit a formal
definition, as it is nearly identical to the function E~·� described in Table 3. The
only difference is that H~·� evaluates a predicate against two interfaces and two local
stigmergies. Identifiers are decorated with indexes (xs, xr) to clarify whether they refer
to a variable in the knowledge of the sender or the potential receiver, respectively.

Similarly, the definitions of satisfaction and well-definedness closely follow the ones
introduced for guards. The ability of combining link predicates offers an intuitive way
to model different communication modes for agents. For instance, the predicate

‖poss − posr‖ ≤ δ ∨ (LongRanges = “true” ∧ LongRanger = “true”),

where ‖ · ‖ denotes the Euclidean norm, states that two agents can communicate if their
positions are closer than a constant δ or if they both possess a long-range networking
device.

2.3. Agents and systems
Agent-level transitions, triggered when an agent performs an action, are modelled in

Table 7. We assume that v = value(L, x) and t = time(L, x). Rule (skip) states that an

8

agent can perform a transition when its behaviour allows a
√

-move. According to rule
(attr) we have that, when an agent performs an attribute update x ← e, the result of
expression e is bound to attribute x, and the stigmergy keys used to evaluate e are added
to the set Zc of keys to be confirmed.

Stigmergy updates are defined by rule (lstig) and result in the insertion of a value in
the local stigmergy of the agent. We use tod() to represent the timestamp (obtained from
a global clock) for the new value. Since the newly inserted value must be propagated,
its key is added to Zp; Zc may also be updated, like for the attribute update case. Rule
(await) specifies that a guarded process b → P can only proceed if the guard b is
satisfied. Notice that, if the guarded process can proceed, the stigmergy keys contained
in the guard are added to the set Zc of the agent. The above transitions are labelled ε to
denote they are internal to each agent, i.e. they are invisible from the point of view of
the system. All agent-level rules are guarded by the condition Zc = Zp = ∅, meaning
that an agent has to propagate or confirm all pending variables propagate or confirm all
pending keys before continuing its execution.

P
√

7−→ P′ Zc = Zp = ∅

〈I, L, P,Zc,Zp〉
ε
−→ 〈I, L, P′,Zc,Zp〉

(skip)

P
x←e
7−−−→ P′ E~e� (I, L) = v I[x 7→ v] = I′ Zc = Zp = ∅

〈I, L, P,Zc,Zp〉
ε
−→ 〈I′, L, P′,Zc ∪K ~e� ,Zp〉

(attr)

P
xfe
7−−−→ P′ E~e� (I, L) = v t = tod() Zc = Zp = ∅

〈I, L, P,Zc,Zp〉
ε
−→ 〈I, L ⊕ (x, v, t), P′,Zc ∪K ~e� ,Zp ∪ {x}〉

(lstig)

I, L |= b 〈I, L, P,Zc,Zp〉
ε
−→ 〈I′, L′, P′,Zc′,Zp′〉

〈I, L, b→ P,Zc,Zp〉
ε
−→ 〈I′, L′, P′,Zc′ ∪K ~b� ,Zp′〉

(await)

Table 7: Semantics of agents.

On the other hand, system-level transitions formalize the handling of shared knowl-
edge inside the virtual stigmergy and are shown in Table 8, where λ denotes a generic
transition label. Rule (par) simply states that parallel subsystems interleave their internal
actions. The symmetrical rule to (par) has been omitted. Rules (comm) and (assoc)
describe that parallel composition is commutative and associative. Rule (propagate)
states that an agent can always remove a variable from Zp and propagate its value to
neighbours. Rule (confirm) specifies that the same can happen with Zc keys. The differ-
ent nature of the messages is reflected by different transition labels (put for propagation;
qry for confirmation). The (put) rule allows messages to spread to other agents. When
a subsystem performs a put (I′,L′, x, v, t) transition, a neighbouring agent (that is, one
that satisfies the predicate ϕx together with the sender) with an expired value will update
its local stigmergy and add x to the keys to propagate. Notice that x is also removed
from Zc, as it is assumed that the new value does not need to be confirmed anymore.

9

S
ε
−→ S ′

S ‖ T
ε
−→ S ′ ‖ T

(par)
S 1 ‖ S 2

λ
−→ S ′

S 2 ‖ S 1
λ
−→ S ′

(comm)
(S 1 ‖ S 2) ‖ S 3

λ
−→ S ′

S 1 ‖ (S 2 ‖ S 3)
λ
−→ S ′

(assoc)

x ∈ Zp L(x) = (v, t)

〈I,L, P,Zc,Zp〉
put(I,L,x,v,t)
−−−−−−−−−→ 〈I, L, P,Zc,Zp \ {x}〉

(propagate)

x ∈ Zc L(x) = (v, t)

〈I,L, P,Zc,Zp〉
qry(I,L,x,v,t)
−−−−−−−−−→ 〈I, L, P,Zc \ {x},Zp〉

(confirm)

S
put(I′,L′,x,v,t)
−−−−−−−−−−→ S ′ I′,L′, I,L |= ϕx L ⊕ (x, v, t) , L

S ‖ 〈I,L, P,Zc,Zp〉
put(I′,L′,x,v,t)
−−−−−−−−−−→ S ′ ‖ 〈I, L ⊕ (x, v, t), P,Zc \ {x},Zp ∪ {x}〉

(put)

S
qry(I′,L′ x,v,t)
−−−−−−−−−−→ S ′ I′,L′, I,L |= ϕx time(L, x) < t

S ‖ 〈I,L, P,Zc,Zp〉
qry(I′,L′,x,v,t)
−−−−−−−−−−→ S ′ ‖ 〈I, L ⊕ (x, v, t), P,Zc \ {x},Zp ∪ {x}〉

(qry1)

S
qry(I′,L′,x,v,t)
−−−−−−−−−−→ S ′ I′,L′, I,L |= ϕx time(L, x) ≥ t

S ‖ 〈I,L, P,Zc,Zp〉
qry(I′,L′,x,v,t)
−−−−−−−−−−→ S ′ ‖ 〈I, L, P,Zc,Zp ∪ {x}〉

(qry2)

Table 8: Semantics of systems.

Notice that a composite system evolves by emitting the same transition label as its
subsystem. This means that the rule is recursively applied until all neighbours perform
their stigmergy update.

The rules for confirmation messages are quite similar, but the action of agents
depend on the current state of their local stigmergy. Rule (qry1) says that an agent
with an older entry will react to a query transition qry (I′, x, v, t) by updating its own
stigmergy and propagating the value afterwards. On the other hand, an agent that has a
more up-to-date value will just update Zp to propagate it, while discarding the received
entry (rule qry2).

2.4. Tuples and atomic assignments

In the rest of the paper, we will sometimes use compound assignments of the form
x1, . . . , xn ← e1, . . . , en. The agent performing such an action will execute a sequence
of assignments x1 ← e1; . . . ; xn ← en with the guarantee that no other transition can
happen between them. All expressions are evaluated over the initial state of the agent:
therefore, their order is irrelevant. When performing a compound stigmergic assignment
x1, . . . , xn f e1, . . . , en, all values receive the same timestamp.

We further enrich our language with the notion of stigmergy tuples. Tuples are
disjoint sets of stigmergic variables; all variables within the same tuple belong to the

10

same virtual stigmergy. A tuple acts as a single stigmergic variable: whenever any
element of a tuple can be propagated or requested, the rest of the tuple will be as well,
in an atomic fashion. Thus, these communication steps cannot be interleaved with any
other action.

These design choices are driven by the need to restrict the interleaving of agents, by
giving the user of the language a natural way to express operations that should always be
performed together. Similarly, stigmergic tuples allow to store complex data in virtual
stigmergies, with the guarantee that such data will be propagated atomically.

2.5. Clocks and verification

As stated in Section 2.3, the semantics of LAbS are based on the assumption that
agents can always retrieve a (unique) timestamp from a global clock. Using a distributed
clock would be a more realistic option for the actual implementation of multi-agent
systems, and is the solution adopted by languages such as Buzz [1]. However, our
language has an important difference in that its main focus is on formal verification,
rather than execution on real or simulated platforms.

From a verification standpoint, the purpose of a clock is simply to enforce a total
order on the transitions by assigning them a unique identifier (i.e., the timestamp).
Using a distributed clock would unnecessarily inflate the state space with intermediate
transitions for distributed time-stamping. Instead, we simply compute timestamps by
relying on a global counter, which we increase each time a new transition takes place.

Please note that, due to interleaving, the above mechanism does not lose any feasible
ordering of events with respect to a distributed schema. In fact, it captures all the total
orders that would be possible with distributed clocks. In contrast, multiple (partial)
orderings under the distributed clock can correspond to the same total order under the
global clock. As a consequence, using a global clock helps to maintain a more compact
state space, which is very desirable for verification.

Since we recognise that targeting real systems is a desirable goal for our language,
we do plan to upgrade the SOS rules so that agents maintain a distributed clock. Even in
that case, for encodings which are targeted to verification, due to the above mentioned
benefits, it would still be more convenient to rely on a global clock.

3. Modeling flocking behaviour

In this section, we consider a well-known example of flocking behaviour, which can
be naturally modelled by using the language features described above. The example
extends the one we considered in [7] by allowing additional interaction strategies, which
are modelled by multiple stigmergies. Previously, we were considering mechanisms for
moving in the same direction; here we also consider moving closer and avoiding colli-
sions. We also report some preliminary experimental results on automated verification
of the described system.

Boids (short for bird-oid objects) is the term used to refer to sets of artificial agents
that aim at recreating the emergent behaviour commonly observed in flocks of birds,
schools of fish, swarms of social insects, and other natural systems [12]. Their behaviour,
known as flocking, can generally be described as «the collective coherent motion of

11

large numbers of self-propelled organisms» [13] and emerges from a set of simple local
rules followed by the individual agents. Examples of such local rules are reported below
(also see Fig. 2):

– alignment: head in the same direction as the other flockmates nearby

– cohesion: move closer to larger groups of flockmates

– separation: avoid collisions with flockmates nearby.

(a) Alignment (b) Cohesion (c) Separation

Figure 2: Individual rules for Boids. Images from Craig Reynolds’ personal web page1.

The three rules above may be applied simultaneously, subject to different ranges of
action. For instance, a boid can only trigger the separation mechanism of another one
only if the two are sufficiently close to each other: in the interaction shown in Figure 2
(c) the two boids at the corners of the arena do not play any role with respect to the boid
actively performing separation. Similarly, the boid adjusting his position in Figure 2 (b)
can only be influenced by the four flockmates nearby. In general, the ranges of action
for the alignment, cohesion, and separation rules are represented by three different and
possibly overlapping circular regions of space (Figure 3). This model of interaction
was originally proposed as an efficient way to generate realistic computer animations
of flocks [8] and has been very largely spread since, especially for simulation, with
countless implementations available.

Boid position

Separation

Alignment

Cohesion

Figure 3: Regions of space where a flockmate can trigger a boid’s reaction.

We now show that our language makes it possible to program the boid-like behaviour
described above very naturally and concisely. The idea is to introduce appropriate

1https://www.red3d.com/cwr/boids/

12

https://www.red3d.com/cwr/boids/

stigmergic predicates that intuitively capture the three rules of Figure 2. In the rest of
the section, we consider a swarm of N agents distributed on a square grid of size G ×G.

As a first step, we describe how to program only the alignment mechanism shown
in Figure 2 and whose range of action corresponds to the intermediate ring of Figure 3.
Such behaviour is described in Table 9 and is the same as in [7]. We store the position of
an agent and its direction as a pair of attributes x, y and as a stigmergic tuple (dirx, diry),
respectively. We split the behavioural specifications into two processes. All the agents in
the system initially execute the Init process, choosing a non-deterministic initial position
and direction. Note the generalized choice construct to express P[x1/x] + P[x2/x] +

. . . + P[xn/x] as
∑

x∈{x1,x2,...,xn}
P(x).

After the initialization, every agent simply keeps moving on the arena one step at a
time following his own direction and position. This continuous movement is captured
by the Behavior process, which corresponds to repeatedly executing the Move process.
Note that the arena wraps around: for instance, an agent at position (x,G−1) that moves
in direction (0, 1) will reach (x, 0). This explains the modulo operators in Move.

To specify the range of action of the alignment rule, we can now introduce the
stigmergic predicate ϕalignment. The propagation of the stigmergic tuple (dirx, diry) is
enabled whenever the distance between two agents happens to be less or equal to a
constant δ. In that case the two boids agree on the direction with the most recent
timestamp (also see Figure 1).

Init ,
∑

(i, j)∈D

dirx, diry f i, j;
G−1∑
i=0

G−1∑
j=0

x, y← i, j

where D = {(1, 1), (1,−1), (−1, 1), (−1,−1)}
Behavior , Move; Behavior

Move , x, y← x + dirx mod G, y + diry mod G
ϕalignment ≡ ‖(x, y)1 − (x, y)2‖ ≤ δ

Table 9: A simple boid-like system implementing only the alignment mechanism

We can now extend our example by modelling the cohesion and separation dynamics
through additional virtual stigmergies. The specifications are given in Table 10. To
implement a cohesion mechanism, we need the boids to maintain some information
about the group of agents they belong to. This information is stored within the cohesion
stigmergy. Each group has a leader and zero or more followers. We also assume that
each agent has an id attribute corresponding to a unique, immutable value. The leader
registers its id and position in the variables leader, posx, and posy. The last variable in
the tuple, count, is a counter that is repeatedly updated by the followers. In the initial
state, each boid is the leader of its own group, and count is set to 1 (see Init function).
Thanks to the link predicate ϕcohesion, a boid can decide to join a larger group than the
one it is actually part of. When this happens, the new follower increases the group
counter and moves towards its new leader, if they are far apart (Figure 4).

Even with the additional dynamics, the specifications are still very concise when

13

Init ,
∑

(i, j)∈D

(dirx, diry)f (i, j);

G−1∑
i=0

G−1∑
j=0

x, y← i, j;

(leader, count, posx, posy)f id, 1,−1,−1
where D = {(1, 1), (1,−1), (−1, 1), (−1,−1)}

Behavior , Move + Separate; Attract; Behavior
Separate , x + dirx mod G = sepx ∧ y + diry mod G = sepy →

√

Move , x + dirx mod G , sepx ∨ y + diry mod G , sepy → (
x, y← x + dirx mod G, y + diry mod G;
sepx, sepy f x, y

)
Attract , leader = id → posx, posy f x, y

+

leader , id → countf count + 1; (
|x − posx| ≤ δ→

√

+

|x − posx| > δ→ dirx f
posx−x
|posx−x|

); (
|y − posy| ≤ δ→

√

+∣∣∣y − posy

∣∣∣ > δ→ diry f
posy−y

|posy−y|
)

ϕalignment ≡ ‖(x, y)1 − (x, y)2‖ ≤ δ (dirx, diry)
ϕseparation ≡ |x1 − x2| ≤ 1 ∧ |y1 − y2| ≤ 1 (sepx, sepy)
ϕcohesion ≡ count1 ≥ count2 (leader, count, posx, posy)

Table 10: Specifications for a boid implementing all three mechanisms.

compared to several implementations in other general-purpose or agent-oriented lan-
guages. A comparison is reported in Table 11. Lines of code have been separated
into initialization code, which sets the initial state of the system, and behavioural code,
describing its evolution. The competing implementations need elaborate sequences of
operations to update the agents’ state, and this partially explains their higher number
of lines of code. At the same time, it is worth to notice that LAbS is the only lan-
guage to provide an asynchronous and distributed model of the system. In the other
implementations, the state of each agent is updated at each simulation step to take
into account the synchronous evolution of the states of its neighbours. This require-
ment about synchronization negatively affects the length and the readability of the
code. In LAbS the dynamics are naturally expressed and easily identified, while in
the other implementations the code related to agent-level dynamics is intermingled

14

Language Lines of code
Initialization Behaviour Total

LAbS 2 16 18
AgentScript2 20 37 57
NetLogo3 [14] 13 56 69
JavaScript4 10 98 108

Table 11: Comparison of several boids implementations.

with simulation-related computations. Furthermore, a distributed implementation of a
synchronous model requires additional guarantees on the communication capabilities of
agents, which are not needed under LAbS.

put

Figure 4: Our cohesion rule in action. Each dotted box contains a group of agents. Filled shapes denote
leaders, while the followers are outlined. One of the followers of the larger group propagates the cohesion
tuple (leader, count, posx, posy) to the lonely leader in the bottom left, which then becomes a follower and
points toward its new leader.

The purpose of the separation mechanism is to try to prevent two agents from getting
too close to each other. We achieve this by letting boids communicate their position
over a third virtual stigmergy containing the tuple (sepx, sepy). At the same time, we
add guards to the Move process so that movements can only be performed if the next
position of the boid is different from (sepx, sepy). The link predicate ϕseparation describes
the Moore neighbourhood [15] of a boid: thus, only agents that are in adjacent locations
are enabled to interact on this stigmergy (Figure 5).

Preliminary study on automated verification. In the rest of the section, we report our
ongoing work towards automated verification of safety properties of LAbS systems.
As a preliminary study, we focus in re-using mature existing techniques and tools for
the verification of mainstream imperative languages. More specifically, we rely on a
mechanized encoding of LAbS specifications as a C program that enables us to reduce
safety checking of a given LAbS system to reachability analysis of a nondeterministic
sequential imperative program. The advantage of this approach is that we can immedi-
ately benefit from new or improved techniques for this kind of analysis as soon as they

2http://agentscript.org/models/flock.html
3http://ccl.northwestern.edu/netlogo/models/Flocking
4https://lexicalgap.com.au/playground/boids/

15

http://agentscript.org/models/flock.html
http://ccl.northwestern.edu/netlogo/models/Flocking
https://lexicalgap.com.au/playground/boids/

Boid position

Separation

Alignment (δ = 4)

Figure 5: A visualization of the link predicates corresponding to regions in Figure 3. The Cohesion stigmergy
is not depicted, as its predicate does not depend on distance.

are put forward.
Motivated by the apparent abundance of mature verification tools for C programs,

we developed a mechanized translation procedure from LAbS specifications to C.
The idea of our translation is to encode the possible transitions of the LAbS system

as separate functions in the target program, and repeatedly non-deterministically select
and execute one of them to model the evolution of the system.

More specifically, in the target program, we introduce a separate function for each
action occurring in the formal specifications. For example, the target program obtained
from the system of Table 9 contains only one agent-level function that encodes the only
action occurring within the Move sub-process. In addition, we add to the target program
separate functions for system-level transitions. Such functions precisely implement the
rules of Tables 7 and 8. Finally, we add the main function, which works as a scheduler,
modelling the interleaving of the actions of the different agents and of the system, by
non-deterministically invoking either a system or an agent function at a time.

During the generation of the target program, transitions (and thus their corresponding
functions in the program) are associated with unique identifiers, that are used for
providing the scheduler with the means for nondeterministically selecting the enabled
action at any given step (note that there may be multiple actions enabled at any given
step). A program counter keeps track of the action under execution and updated after
the actual execution. This warrants the preservation of the structure of the specified
processes, and disallows the execution of actions interleavings that are banned by the
semantics of the language. To model these non-deterministic choices, we introduce
symbolic variables in the target program and make suitable assumptions to restrict their
values, whenever needed. Similarly, we introduce additional symbolic variables to
model the non-deterministic interleaving of agent-level transitions with system-level
ones, and the asynchronous operations triggered by the stigmergic interaction. External
non-determinism (e.g., the position of a bird on the grid for the system of Table 9) is
also modelled with non-deterministic variables. For a concrete example, we refer the
reader to Appendix A where a simplified version of the encoding of Table 9 is presented.

The scheduler is the main function of the program. All the other functions encode
either the behaviour for the actions of single agents actions or system-level events as
mentioned above. Explicitly including the scheduler in the encoding is particularly
convenient in our case. First, it allows to sequentialize the parallel composition of the

16

behaviour of the agents and the system transitions, thus eliminating concurrency and
making it possible to use the tools for analysis of sequential programs. Second, it allows
to model different scheduling variations by controlling the non-determinism in the
interleaving of the individual transitions. For instance, we can impose fair interleaving
of agents by considering only the executions where the scheduler lets agents perform
their transitions in a round-robin fashion, as in the semi-synchronous model (SSYNC)
commonly used to enforce fairness guarantees on infinite traces [16].

We intend to verify the following consensus properties for the Boids system of
Table 10:

– dir: the variable (dirx, diry) has the same value in all local stigmergies

– leader: all agents have the same leader.

We checked the above two properties for several variants of the system under
consideration, experimenting with different kinds of techniques for the analysis of the
corresponding C program. We tried SAT and SMT-based bounded model checking
for under-approximate analysis using the already mentioned CBMC, 2LS [17], and
the SMT-based tool ESBMC [18]. We also tried plain abstract interpretation with
IKOS [19] using interval or gauge domains [20]. We tried SMACK [21] with its Corral
backend [22] to experiment with abstraction refinement, and CPAchecker [23, 24] for
explicit-value analysis based on counterexample-guided abstraction refinement as well
as predicate abstraction. We also tried out 2LS to experiment with function-modular
interprocedural analysis.

With the current encoding, we found under-approximation (i.e. bounding the number
of iterations in the scheduler) to be the only way to obtain informative results from
the analysis of any of the considered systems. In particular, the bounded model check-
ers CBMC, 2LS, and ESBMC provide us with correct results, with CBMC and 2LS
achieving similar performances and ESBMC being slower. As for the other tools, we
obtained inconclusive analyses with IKOS, that detects a potential assertion violations
both on safe and unsafe instances; false positives with SMACK; non-terminating analy-
sis with 2LS in function-modular interprocedural mode and with CPAchecker in both
the considered configurations.

All tests were executed on an otherwise idle 64-bit GNU/Linux workstation with
kernel 4.9.95, equipped with 128GB of physical memory and a dual 3.10GHz Xeon
E5-2687W 8-core processor. Our experimental tool that automatically translates LAbS
specifications into C programs is called SLiVER (Symbolic LAbS Verifier) is available
at https://github.com/labs-lang/sliver/releases/latest.

The program variants, the exploration parameters, and verification results are re-
ported in Table 12. The first column indicates the analyzed variant of the system of
Table 10. The letters A, S, C are used to indicate the employed interaction mechanism,
respectively Alignment, Separation, Cohesion. The letter W is used to indicate that the
arena wraps around. Wrap-around movements can be avoided by replacing the Move
process with the following one:

17

https://github.com/labs-lang/sliver/releases/latest

Move′ , (x + dirx, y + diry) , (x + dirx mod G, y + diry mod G)→
√

+

(x + dirx, y + diry) = (x + dirx mod G, y + diry mod G)→ Move

The additional guard clauses prevent the agents from moving when (x, y) + (dirx, diry)
does not correspond to a valid grid position. The other columns of the table, left to
right, indicate the overall number of agents in the system, the number B of iterations of
the scheduler, the threshold δ used in the link predicates, the property, the verification
outcome, and the verification time in seconds. We report the best analysis performance
we could obtain using using any of the considered symbolic model checkers. We set the
size G of the arena to 10 for all instances. Please note that, within the reported bounds,
the verification is exhaustive: the property under consideration is checked for every
possible initial position and direction of the boids on the grid, and for every possible
interleaving of their actions.

Each system parameter affects the complexity of the verification task in a differ-
ent way. Enabling all interaction mechanisms increases the complexity of individual
behaviour and the frequency of interaction over the stigmergies, resulting in a bigger
state space. The size of the arena G and the number of agents influence the number
of feasible initial states. A small value of δ makes stigmergic interaction less likely to
happen: therefore, agents might not easily reach a consensus on the direction. Finally,
without wrap-around movement a boid can get stuck on the border of the arena. This
can in turn affect the number of transitions required for consensus.

When verifying AW instances, we found that for a 3-agent system and a number of
steps B = 12 the smallest value of δ for which the system satisfies property dir is 13.
However, by adding only one more agent the property would no longer hold within the
same parameters: to find a safe 4-agent system we have to increase B to 19. With yet
one more agent, the smallest value of B for which dir holds grows to 27. This difference
is due to the fact that larger systems contain traces where stigmergic interaction among
all agents does not happen within a smaller number of steps. We have experienced that
the performance of the verifier becomes noticeably worse as the value of B gets closer
to the one for which the property under consideration holds. With 5 agents, verifying a
safe system takes over 15 hours.

The complexity of the individual behaviour also affects the performance of our
analysis, especially in safe systems. In fact, we checked the leader property against
two AC instances containing 3 agents, with parameters G = 10, δ = 10, where B
was set respectively to 23 and 24 for the unsafe and safe instance. Verification of
the safe instance required about 22 hours; by comparison, the analysis of the unsafe
system terminated in less than 30 minutes. If we allow agents to perform wrap-around
movements, then the smallest value of B such that the property leader holds is 27,
confirming our previous claim about the effect that this variation has on the collective
behaviour of the system. However, despite the lower bound, the time needed to verify
the safe AC instance is significantly longer than that required for the safe ACW one,
since the Move′ process is more complex than Move. Finally, we analyzed additional
instances with a 16 × 16 arena (Table 13). Even though the increased size of the arena

18

Variant Agents B δ Property Result Time (s)
A W 3 12 12 dir Fail 14
A W 3 12 13 dir Pass 153
A W 4 18 13 dir Fail 637
A W 4 19 13 dir Pass 1720
A W 5 26 13 dir Fail 18315
A W 5 27 13 dir Pass 55653
AC 3 23 10 leader Fail 1640
AC 3 24 10 leader Pass 79866
AC W 3 24 10 leader Fail 531
AC W 3 26 10 leader Fail 19337
AC W 3 27 10 leader Pass 62646

Table 12: Automated analysis of Boids on a 10 × 10 arena.

Variant Agents B δ Property Result Time (s)
A W 3 26 21 dir Fail 1350
AC 3 26 21 leader Fail 1649
AC 3 27 21 leader Pass 108935

Table 13: Automated analysis of Boids on a 16 × 16 arena.

leads to a much larger set of initial states, in the case of unsafe instances the analysis
performance was not severely affected.

It is worth to notice that to generate the C programs our technique deliberately avoids
using features that are well-known sources of complexity for program analysis, such as
dynamic memory allocation, pointers, concurrency, etc. Nevertheless, the state space is
remarkably large due to the symbolic variables introduced to simulate the interleavings,
the internal and external non-determinism, and finally the asynchronous operation of the
system-level transitions. Thus, under-approximation approaches have to explore a large
set of states even for small bounds (which can make the analysis resource-intensive).
On the other hand, over-approximation turns out to be either inconclusive or hardly
terminating, due to the very large number of spurious traces introduced by abstraction.
Automated analysis of programs of this kind seems, in fact, still a challenge.

4. Modeling the environment

Agents are mobile entities that are situated and operate in a physical environment.
This agent-environment interaction is a fundamental feature of many real-world scenar-
ios [25, 5]. Foraging, i.e. the task of collecting items that are scattered through an arena,
is one such scenario. This kind of interaction enjoys some specific properties that are
difficult to express with the constructs introduced in Section 2. In this section we extend
the language to support a shared-memory abstraction of the environment; we then show
how the extended language can be used to easily model some additional examples, by
using the environment as a medium of interaction between agents or to model external
objects.

19

In the initial version of our language [7], expressions and guards could only refer
to attributes or stigmergic variables. Therefore, to access an environment variable the
user of the language had to introduce a read operation to copy its value into an attribute.
By contrast, we now allow environment variables to occur in expressions and guards,
and we update the formal semantics of situated systems so that agents can atomically
perform read and write operations on the environment. These changes lead to a more
intuitive syntax and make it easier to reason about the interaction between the agents
and the environment.

4.1. Semantics of situated systems
Assuming that there is a set KE disjoint from KI and KL, we define an environment

to be a partial function fromKE to the set of valuesV. A situated system is a pair (E, S)
where E is an environment and S is a LAbS system. We now allow expressions to also
contain identifiers from KE . This requires introducing a new semantic function, which
extends the one in Table 4 as follows:

E2~·� : Expr −→ Env→ I → L ↪→V

E2~v� = λE .λ I .λL .v

E2~x� =

λE .E1~x� if x ∈ KE

λE .E~x� otherwise

where E1~x� = λ I .λL .E(x)
E2~e1 � e2� = λE .λ I .λL .E2~e1� (E, I, L) � E2~e2� (E, I, L)

In the definition above we have used Env to denote the set of all environments. Agents
are now able to perform an additional basic action to store the result of an expression
into an environment variable. We denote this action by x ⇐ e (Table 14). Since any
expression may now potentially refer to environmental variables, their evaluation can
no longer be done at the individual level. We therefore revise the semantics of agents
and add a transition label e . x denoting the willingness of an agent to assign the value
of expression e to variable x (Table 15). Note that we omit Rule (skip) as it is the same
as in Table 7.

To define the semantics of situated systems, in Table 16 we introduce an unlabeled
transition relation (�). As mentioned above, the evaluation of expressions and the
assignment to the relevant store of variables is described by rules (EvalI,L,E). Rule
(Await) has also been removed from agent-level rules, as guards may now also refer to
environmental variables.

Rule (msg) simply states that the actions related to stigmergic communications only
affect the system and leave the environment unchanged. Finally, rule (parE), which is
commutative, states that the parallel composition of two systems affects the environment
in an interleaved fashion. The rule symmetrical to (ParE) is omitted

4.2. Case studies
In this section, we present a selection of situated systems in LAbS. We exploit the

new operational semantics of the language to improve our specifications for foraging

20

αF x← e | xf e | x⇐ e |
√

Table 14: Basic processes in situated systems.

P
x←e
7−−−→ P′ Zc = Zp = ∅

〈I,L, P,Zc,Zp〉
e . x
−−−→ 〈I,L, P′,Zc ∪K ~e� ,Zp〉

(attr)

P
xfe
7−−−→ P′ Zc = Zp = ∅

〈I,L, P,Zc,Zp〉
e . x
−−−→ 〈I,L, P′,Zc ∪K ~e� ,Zp〉

(lstig)

P
x⇐e
7−−−→ P′ Zc = Zp = ∅

〈I,L, P,Zc,Zp〉
e . x
−−−→ 〈I,L, P′,Zc ∪K ~e� ,Zp〉

(env)

Table 15: Semantics of agents in a situated system.

(Sect. 4.2.1), a very popular case study in the multi-robots literature. We also present
improved versions of opinion formation protocols (Sect. 4.2.2), namely a basic voter
model [26], and then a more general one based on k-unanimity [27]. Finally, we present
the LAbS specifications of two population protocols [9] to demonstrate the use of the
environment (Sect. 4.2.3).

4.2.1. Foraging
Foraging is a popular case study in distributed robotics, as it can model many other

scenarios, such as waste retrieval and search and rescue [28]. In this scenario, a swarm
of robots explores the arena with the goal of finding and collecting items. We can store
these items in the environment and interact with them through the primitives introduced
in Section 4. Specifications are shown in Table 17. The robots perform a random walk
to explore the arena. Like in the flocking case study, we assume the arena is a torus and
that D is the set of directions a robot can take. The process Step models a single step in
a random walk.

Now suppose that there are m items and that the environment variables xi, yi contain
the position of the i-th item. If the item has been collected, these variables are instead
set to −1. Then, a robot can check if it has found the i-th item, and possibly collect it,
by executing the process Checki.

We denote by
∏

xi∈X P(x) the parallel composition of all processes in the form
P[xi/x]: the behaviour that checks for the presence of a generic item is a parallel
composition of one Checki process for each item. Thus, the foraging behaviour is just a
recursive sequence of steps and checks.

4.2.2. Opinion formation
Opinion formation is a class of protocols where each agent starts with a certain

opinion taken from a set of options O = {1, 2, . . . ,m}, and may dynamically change,

21

a
e . x
−−−→ 〈I,L, P,Zc,Zp〉 E2~e� (E, I, L) = v , ⊥ x ∈ KI

(E, a)� (E, 〈I[x 7→ v],L, P,Zc,Zp〉)
(evalI)

a
e . x
−−−→ 〈I,L, P,Zc,Zp〉 E2~e� (E, I, L) = v , ⊥ x ∈ KL

(E, a)� (E, 〈I,L⊕(x, v, tod()), P,Zc,Zp ∪ {x}〉)
(evalL)

a
e . x
−−−→ 〈I,L, P,Zc,Zp〉 E2~e� (E, I, L) = v , ⊥ x ∈ KE

(E, a)� (E[x 7→ v], 〈I,L, P,Zc,Zp〉)
(evalE)

(E, 〈I,L, P,Zc,Zp〉)� (E′, 〈I′, L′, P′,Zc′,Zp′〉) E, I,L |= b
(E, 〈I,L, b→ P,Zc,Zp〉)� (E′, 〈I′, L′, P′,Zc′ ∪K ~b� ,Zp′〉)

(await)

S
µ(I,x,v,t)
−−−−−−→ S ′

(E, S)� (E, S ′)
(msg)

(E, S)� (E′, S ′)
(E, S ‖T)� (E′, S ′‖T)

(parE)

Table 16: Semantics of situated systems. a denotes a generic LAbS agent.

subject to certain conditions. The voter model is an elementary such protocol, where
agents can inspect the opinion of a random neighbour and imitate it [26]. Stigmergies
are not suitable in this scenario, as opinions would only propagate according to their
attached timestamps. Opinion formation protocols, on the other hand, might have
additional requirements, such as encouraging the spread of the option initially held by a
majority of agents.

Table 18 shows a LAbS encoding of a voter model supported by the environment
primitives introduced in Section 4. An agent can either talk, by writing the value of its
attribute opinion to the environmental variable env, or listen, by doing the reverse. We
could similarly model more complex protocols, such as the k-unanimity rule. In this
case, an agent only changes its opinion to some option if it perceives that k other agents
agree on that option [27]. We can use k environment variables to store opinions. We use
a generalized choice to describe that, whenever an agent talks, it writes its own opinion
into one of such variables.

In these examples, every agent can talk and listen to any other agent. This is not the
case in most research on opinion formation, where agents are placed on a graph and can
only communicate with their neighbours. However, we can model these scenarios by
introducing more environment variables and letting agents interact through different
subsets of the environment.

4.2.3. Population protocols
Population protocols are a model of distributed computing based on anonymous,

mobile agents with uniform behaviour that may change their state through pairwise
interactions [9]. The allowed interactions are encoded as a relation over pairs of states.

22

Init ,
G−1∑
i=0

G−1∑
j=0

x, y← i, j

Behavior , Step;
m∏

i=1

Checki; Behavior

Step ,
∑

(i, j)∈D

x, y← x + i, y + j

Checki , (x, y) = (xi, yi)→ xi, yi ⇐ −1,−1
+

(x, y) , (xi, yi)→
√

Table 17: Specifications for the Foraging example.

Init ,
∑
i∈O

opinion← i

Behavior , Talk | Listen
Listen , opinion , env→ opinion← env; Listen

Talk , env⇐ opinion; Talk

Table 18: Specifications for the voter model example.

An element ((p, q), (p′, q′)) of the relation, typically denoted as (p, q) 7→ (p′, q′), is
called a transition and means that a pair of agents with states p and q can interact
and evolve, respectively, to states p′ and q′. The first element of the pair is called the
initiator of the interaction, while the other is called the responder. Transition relations
may be asymmetric, i.e. a pair of agents may evolve in different ways depending on
which one initiates the interaction.

Given a set Q of individual states, a configuration is a multiset over Q, which
expresses how many agents are in a specific state. Systems defined by population proto-
cols never terminate: rather, they are said to stabilize when they reach a configuration
that cannot be changed by further transitions. With the fairness assumption that any
configuration which is reachable infinitely often is eventually reached, some population
protocols always stabilize to a configuration which satisfies a given predicate over its
initial configuration. In this case, we say that the protocol computes the predicate.

In this section, we focus on a subset of population protocols, known as majority
protocols. Their initial states correspond to opinions of agents, and the goal of the
protocol is to determine the most popular opinion. These protocols are considered
correct if they stabilize to a configuration in agreement with the initial majority opinion.

Approximate majority protocol. Let us first examine a 3-state protocol [29] where all
the agents are initially either in state Y or N and evolve according to the following rules:

YN 7→ Yb (1) Yb 7→ YY (2) NY 7→ Nb (3) Nb 7→ NN (4).

23

Init ,
∑
i∈O

opinion← i

Behavior , Talkk | Listenk

Listenk , (unanimity→ opinion← env1
+

¬unanimity→
√

); Listenk

Talkk ,
k∑

i=1

envi ⇐ opinion; Talkk

where unanimity ≡
k∧

i=2

env1 = envi

Table 19: Specifications for the k-unanimity rule example.

Rules (1) and (3) state that an agent can reach a blank state, b, after meeting another
agent with a different opinion. Rules (2) and (4) say that Y- and N-agents can convert
blank agents to their opinion. Notice that this protocol is one-way, i.e. all transitions only
affect the state of the responder. To model this protocol, we exploit the environment as a
medium to model pairwise communication. Namely, an agent may initiate an interaction
by writing its own id and state to the environment, or it can wait until another agent
does that, and then respond by updating the state of its interaction partners accordingly
(Table 20).

Init , state← “Y” + state← “N”
InitE , agent,message⇐ −1,−1

Behavior , Initiate + Respond; Behavior
Initiate , state , “b”→ agent,message⇐ id, state

Respond , agent , id → message = “Y” ∧ state = “N”→ state← “b”
+ message = “Y” ∧ state = “b”→ state← “Y”
+ message = “N” ∧ state = “Y”→ state← “b”
+ message = “N” ∧ state = “b”→ state← “N”

Table 20: Specifications for the approximate majority protocol.

This protocol stabilizes with a high probability to a configuration where all agents are
in the state that had the majority in the initial configuration. However, it is known
that in some cases it will not compute the majority correctly: the system can reach
the consensus on the opinion that was initially held by a minority of agents. Existing
tools, such as Peregrine [30], can automatically prove that the protocol is incorrect; in
Section 4.3 we use SLiVER to confirm these findings.

24

Majority protocol. This protocol [10] is a 4-state protocol with Q = {Y,N, y, n} repre-
senting the full set of individual states and such that all agents are initially either in state
Y or in state N. The transition relation is:

YN 7→ yn (1) Yn 7→ Yy (2) Ny 7→ Nn (3) yn 7→ yy (4).

It can be proved that this protocol successfully computes the majority. To be more
precise, if the initial number of Y-agents is greater than or equal to the number of
N-agents, the system stabilizes to a configuration that only contains Y- and y-agents.
Otherwise, it stabilizes to a configuration that contains only N’s and n’s. To understand
why we explain the transition relation in detail.

Rule (1) gradually removes pairs of Y- and N-agents from the system. Therefore, if
the Y’s have the initial majority then no N will eventually remain, and vice versa. Notice
that, if the initial configuration contains the same number of Y’s and N’s, both states
will disappear from the system. Rule (2) says that a Y-agent can turn an n into a y, while
rule (3) says that N-agents can do the opposite. Finally, the fourth rule states that y’s can
also convert n’s to the y state. Notice that n-agents do not have the opposite capability.
This difference acts as a tie-breaker: a system that is initially tied will eventually reach a
consensus on y.

The specification for this protocol is slightly more complex than the previous one,
as the first rule (YN 7→ yn) affects the state of both the initiator and the responder. We
encode this by letting the responder store its state within an environment variable: the
initiator will check this variable and update its own state accordingly. To preserve the
semantics of population protocols and avoid unwanted interactions, we introduce a lock
variable that every agent has to check before performing an action. Notice our language
does not require specific primitives for locks, thanks to the possibility of performing
multiple atomic assignments and the atomicity of guarded processes.

The full LAbS specification of the majority protocol is reported in Table 21. When
lock is set to 0, agents can only initiate a transition. On the other hand, lock = 1 means
that some agent has already initiated a transition and other agents are free to respond. In
three cases, agents only need to update their state and reset the agent and lock variables
to allow a new transition to take place. In the case of a YN-transition, however, the
responder also stores N in the environment and signals the initiator that they must update
their state by setting lock to 2. When this happens, the initiator is the only agent allowed
to perform an action, namely by executing the Acknowledge process and changing its
own state to y before increasing lock to 3. This signals the responder that the transition
has been performed and it can thus safely reset the environment variables to enable new
transitions. Notice that the overall structure presented in Table 21 can be adapted to
other population protocols, potentially with a higher number of states and transitions.

4.3. Verification of population protocols
In this section we use SLiVER to verify that the approximate majority protocol of

Table 20 is not correct. In fact, for some system evolutions, the agents reach a consensus
on the minority opinion. To prove that, we create an instance where Y-agents are initially
a minority and we consider the following safety property:

– noYconsensus: There is at least one agent whose state is not Y .

25

Init , state← “Y” + state← “N”
InitE , agent,message, responder, lock ⇐ −1,−1,−1, 0

Behavior , (agent = id → Acknowledge
+ agent , id → (Initiate + Respond));
Behavior

Initiate , lock = 0 ∧ state , “n”→ agent,message, lock ⇐ id, state, 1
Respond , lock = 1→

(message = “Y” ∧ state = “N”→
lock, responder ⇐ 2, “N”;
state← “n”;
lock = 3→ agent, lock, responder⇐ −1, 0,−1)

+ ((message = “Y” ∧ state = “n”→ state← “y”
+ message = “N” ∧ state = “y”→ state← “n”
+ message = “N” ∧ state = “y”→ state← “n”);

agent, lock ⇐ −1, 0)
Acknowledge , lock = 2 ∧ state = “Y” ∧ responder = “N”→

state← “y”; lock⇐ 3

Table 21: Specifications for the majority protocol.

This is equivalent to checking that the consensus on the Y opinion is unreachable. We
can check the above property on all states that are reachable after performing a given
number B of system evolutions. If we find a counterexample, we can use it as proof that
the protocol does not compute a majority in the general case.

Furthermore, we can also check whether the majority protocol of Table 21, instanti-
ated with similar parameters, computes the wrong majority. Since this protocol relies on
a different set of individual states, we slightly refine the property to verify as follows:

– noYconsensus′: There is at least one agent whose state is either N or n.

Table 22a reports our verification results for the approximate majority protocol,
while Table 22b contains results for the majority protocol. In both tables we report the
number of Y− and N-agents in the initial configuration, the bound B on the number
of transitions, and the verification result with the corresponding evaluation time. The
experiments were performed on the same machine described in Section 3. Notice that
we did not enforce any constraint on the scheduler: the agents freely interleave their
executions. The considered instances of the approximate majority protocol fail to satisfy
the property, meaning that there is at least one trace where the agents reach a consensus
on Y: this is enough for us to conclude that the protocol does not always compute
the majority correctly. On the other hand, all the considered instances of the majority
protocol where Y does not have the initial majority satisfy the noYconsensus′ property.
These results are not sufficient to prove the correctness of the protocol, but they do
show that the minority opinion does not spread among all the agents. Notice that we
also verified two instances of the majority protocol with a majority of Y-agents. As we

26

Agents
Y N B Result Time (s)
2 3 20 Fail 5
2 3 30 Fail 9
4 6 20 Fail 9
4 6 30 Fail 15

(a) Verification of property noYconsensus
on instances of the approximate majority
protocol.

Agents
Y N B Result Time (s)
2 3 20 Pass 45
2 3 30 Pass 8498
4 6 20 Pass 72
4 6 30 Pass 12718
3 2 20 Fail 13
6 4 30 Fail 629

(b) Verification of property noYconsensus′

on instances of the majority protocol.

Table 22: Verification results for the population protocols of Section 4.2.3.

expected, SLiVER found that both instances failed to satisfy noYconsensus′, meaning
that there exists at least one trace where the majority is computed correctly. We also
noticed that the performance of the bounded model checker on safe instances is strongly
affected by the number of considered agents and by the verification bound.

5. Conclusion, and Related and Future Work

We have introduced LAbS, a core language for multi-agent systems. The key
feature of our language is a distributed, decentralized data structure to model inter-
agent communication, or knowledge propagation. This data structure is based on the
concept of virtual stigmergy. LAbS also offers the possibility of modelling the external
environment, i.e. a shared data repository accessible by the different agents.

In LAbS, agents can directly access only their local copy of the stigmergy; however,
local changes are transparently propagated through the system, thus enabling asyn-
chronous and indirect agent interaction. Rather than restricting the message exchange to
the spatial neighborhood, the language provides a flexible communication mechanism
based on the attributes of the agents. This makes our language appropriate to describe
and reason about different kinds of distributed systems. Also, thanks to the possibility
of introducing multiple stigmergies, our language can model different kinds of com-
munication that can be selected according to specific states of the system or to given
environmental conditions. In the case of multi-robot systems, robots equipped with
multiple sensors can be naturally modelled.

To assess the quality of the main features of the language and its expressive power,
we have used LAbS to model some of the classical case studies considered by the
multi-agents research community, such as Boids and gossiping protocols. We have
automatically analyzed emerging properties of such case studies by relying on a mech-
anisable symbolic translation of LAbS code into imperative programs that allows to
reuse general-purpose verification techniques for mainstream languages.

The actual design choices were driven by the analysis of different languages available
in the multi-robot and multi-agent literature [6]. In fact, many other research groups
have worked on the problems we have been considering. Below we briefly describe
some of the most relevant approaches.

27

Most work in swarm robotics and multi-agent systems research follow a bottom-up
approach, also known as behaviour-based design [28, 31]: designers iteratively alter the
behaviour of individual agents and check whether the desired properties emerge on a
global level. The ability to obtain quick feedback is essential at design time. In fact,
many design methodologies for multi-agent systems heavily rely on simulation [32].
This preference is also reflected by the large amount of simulation platforms in the
literature [33, 34, 35, 36, 37]. Since the design of each simulator results in different
tradeoffs, there is no single best tool for all classes of systems [38]. A drawback of the
simulation-based approaches to system validation is the limited coverage of the state
space. On the other hand, the available agent-oriented formal analysis techniques make
different restrictions on the used languages, e.g. do not support value-passing [39], or
are limited to very specific classes of systems [30]. In contrast, our end-to-end technique
supports systematic analysis without limiting the expressivity of the language.

A great deal of research provides ad-hoc solutions to specific tasks. In the case of
swarm robotics, these can be grouped in a small number of broad categories such as
robot aggregation, flocking, object foraging, construction, and swarm deployment (e.g.
surveillance, distributed sensing, or signal relaying) [40]. Higher-level languages could
help research by providing adequate primitives that can be combined to solve many of
the tasks described above. Higher-level formalisms can also ease the design process
by expressing individual behaviour in an intuitive way while avoiding ambiguity [41].
Buzz [1] is an example of a swarm-oriented language which follows object-oriented
principles and is based upon communication between neighbours, team management,
and consensus achievement. Another example is Proto/Protoswarm [42, 43], a func-
tional language where individual agents are seen as part of a virtual spatial computer.
Formalisations of the semantics of spatial computers have been proposed, to make it
easier to analyse and predict the behaviour of this class of systems [44]. However, to
the best of our knowledge, no formal verification tool for such a paradigm has been
developed yet.

Translations from high-level to lower-level languages have also been proposed
elsewhere. AgentSpeak [45] automatically generates Promela and Java programs that
can be analyzed with Spin and Java Pathfinder [46]. An AgentSpeak-to-C translation is
also available, which makes it possible to simulate the agent’s behaviour and execute it
on real hardware [47]. As agent interaction in AgentSpeak relies on a limited number of
point-to-point primitives, implementing and verifying higher-level mechanisms such as
attribute-based communication or virtual stigmergies would require a substantial effort.

Platforms and languages that provide an explicit notion of an environment include
ISPL [39], the PALPS process calculus [48], and the JaCaMo framework [49], which is
based on a variant of the AgentSpeak language called Jason [50]. Alternative approaches
to support the system environment introduce distinct agents to collect and distribute
data that model the behaviour of the environment the collective set of agents operate
in. This is the case, for instance, of the PARS process algebra [51] and of the SCEL
language [52].

Multi-agent systems can be seen as part of the larger fields of agent-based complex
systems (ACS) [53] and collective adaptive systems (CAS) [54], which are related to
areas as diverse as ecology and economics [55]. Languages and process algebras that
have been used to model and analyse ACS and CAS include NetLogo [14], PEPA [56],

28

and CARMA [57]. Among these, CARMA is the only process algebra supporting
attribute-based communication; however, an agent can only receive an (attribute-based)
message via an explicit, blocking input primitive. By contrast, in LAbS the reception of
a stigmergic message is only constrained by link predicates.

Verification of multi-robot systems has reached general results for a simple model
(look-compute-move) where robots have identical behaviour and repeatedly perform
three actions: store the position of other robots in their local memory; decide if and
where it should move; and finally apply the decision. Depending on the synchronicity
of these steps and on the shape of the arena, possibility or impossibility results have
been proved for tasks related to pattern formation [58] or consensus achievement in the
presence of Byzantine robots [59]. However, the actual requirements on the behaviour
of robots make it difficult to extend these results to heterogeneous systems.

The Peregrine tool [30] can verify and simulate population protocols. This model
of computation is well-suited to analyze chemical reaction networks as well as opinion
formation protocols, but it cannot easily describe interaction patterns other than point-
to-point communication. Peregrine also supports parametric verification, and can
therefore check the correctness of a protocol (such as the example of Section 4.2.3)
for an unbounded number of agents. However, Peregrine can only verify whether a
protocol can compute a given predicate, while encoding the same protocol in LAbS
enables us to verify arbitrary safety properties.

We would now like to conclude by mentioning some possible directions for future
work. In the near future we plan to investigate the need of additional primitives to de-
scribe more complex individual behaviour, such as alternative models of communication
between agents. Adding other constructs to the language, such as a macro system or
the capability to include code from other files, will enable reuse and modularity of the
specifications. This would also allow us to develop standard libraries of behaviours and
patterns (e.g. for link predicates) commonly observed in the multi-agent literature, and
in general simplify the specification of complex systems. We believe that most of these
new functionalities may be added without revising the formal semantics of the language,
and we plan to implement them in the next revision of our verification framework.

We acknowledge that the semantics of the language can be improved by removing
the global clock and instead relying on distributed solutions such as Lamport times-
tamps [11]. Other directions of research might include the study of logical formalisms
to conveniently describe key properties of LAbS systems, and the implementation
of mechanised translations towards other languages to automatically verifying such
properties.

It is worth observing that the experimental evaluation presented in this paper was
not aiming at showing the efficiency of the specific verification technique but rather
the feasibility of our end-to-end approach. In particular, the experiment with Boids
has shown that our language can naturally model different kinds of complex collective
behaviour, that are hard to express with other formalisms, and that automated analysis,
relying on standard software verification tools after a mechanised translation, is indeed
feasible, even though still with relatively small parameters.

One of the sources of complexity which makes analysis particularly demanding is
the amount of non-determinism induced by the scheduling choices (also see Appendix
A). In the target program, the scheduler models an execution step of the system under

29

analysis in correspondence of each executable action, by invoking the function that
encodes that action. In our translation, for the sake of simplicity, this is accomplished
by non-deterministically selecting any action regardless of the process structure, and
then disallowing (via appropriate assumption statements) the alternatives leading to
traces that are not permitted by the semantics of the language. The initial eagerness
affects performance negatively, but can be limited by modifying the scheduler to take
into account the syntactic structure of the encoded process. However, this would require
a significantly more involved encoding, which we leave for future work.

Since reusing off-the-shelf verification tools for imperative programs has so far
turned out to be useful only with relatively simple safety properties and under-approxima-
tion (i.e., bounded model checking), it would be interesting to consider techniques that
would allow proving more complex properties, such as those supported by LTL or similar
temporal logics, that require reasoning about an unbounded number of system evolutions.
In the direction of richer formalisms, we plan to experiment with other verification
frameworks such as LTSmin [60], which features both explicit-state and BDD-based
exploration. With respect to unbounded verification, we plan to consider additional
state-of-the-art techniques for symbolic analysis such as IC3 [61, 62], implemented for
instance in nuXmv [63]. Integrating our analysis tool with simulation-based techniques,
such as statistical model checking [64, 65], to complement formal verification, would
also make our platform more suitable to deal with very large systems.

References

[1] C. Pinciroli, G. Beltrame, Buzz: An extensible programming language for hetero-
geneous swarm robotics, in: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2016, pp. 3794–3800. arXiv:1507.05946,
doi:10.1109/IROS.2016.7759558.

[2] A. Ricci, A. Omicini, M. Viroli, L. Gardelli, E. Oliva, Cognitive Stigmergy:
Towards a Framework Based on Agents and Artifacts, in: Environments for Multi-
Agent Systems (E4MAS), Vol. 4389 of LNCS, Springer, 2006, pp. 124–140.
doi:10.1007/978-3-540-71103-2_7.

[3] Y. Abd Alrahman, R. De Nicola, M. Loreti, On the Power of Attribute-Based
Communication, in: E. Albert, I. Lanese (Eds.), 36th IFIP WG 6.1 International
Conference on Formal Techniques for Distributed Objects, Components, and
Systems (FORTE), Vol. 9688 of LNCS, Springer, Heraklion, Greece, 2016, pp.
1–18. doi:10.1007/978-3-319-39570-8_1.

[4] C. Pinciroli, A. Lee-Brown, G. Beltrame, A Tuple Space for Data Sharing in Robot
Swarms, in: 9th EAI International Conference on Bio-Inspired Information and
Communications Technologies (BICT), ICST/ACM, 2015, pp. 287–294.

[5] D. Weyns, M. Schumacher, A. Ricci, M. Viroli, T. Holvoet, Environments in
multiagent systems, The Knowledge Engineering Review 20 (02) (2006) 127.
doi:10.1017/S0269888905000457.

30

http://arxiv.org/abs/1507.05946
http://dx.doi.org/10.1109/IROS.2016.7759558
http://dx.doi.org/10.1007/978-3-540-71103-2_7
http://dx.doi.org/10.1007/978-3-319-39570-8_1
http://dx.doi.org/10.1017/S0269888905000457

[6] R. De Nicola, L. Di Stefano, O. Inverso, Toward Formal Models and Languages for
Verifiable Multi-Robot Systems, Frontiers in Robotics and AI 5. doi:10.3389/
frobt.2018.00094.

[7] R. De Nicola, L. Di Stefano, O. Inverso, Multi-agent Systems with Virtual Stig-
mergy, in: M. Mazzara, I. Ober, G. Salaün (Eds.), Software Technologies: Ap-
plications and Foundations (STAF) - Collocated Workshops, Revised Selected
Papers, Vol. 11176 of LNCS, Springer, Toulouse, France, 2018, pp. 351–366.
doi:10.1007/978-3-030-04771-9_26.

[8] C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model,
in: 14th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH), Vol. 21, ACM, 1987, pp. 25–34. doi:10.1145/37402.37406.

[9] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, R. Peralta, Computation in
networks of passively mobile finite-state sensors, in: S. Chaudhuri, S. Kutten
(Eds.), 23rd Annual ACM Symposium on Principles of Distributed Computing
(PODC), ACM, St. John’s, Newfoundland, Canada, 2004, pp. 290–299. doi:
10.1145/1011767.1011810.

[10] J. Aspnes, E. Ruppert, An Introduction to Population Protocols, in: B. Garbinato,
H. Miranda, L. E. T. Rodrigues (Eds.), Middleware for Network Eccentric and
Mobile Applications, Springer, 2009, pp. 97–120. doi:10.1007/978-3-540-
89707-1_5.

[11] L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Communications of the ACM 21 (7) (1978) 558–565. doi:10.1145/359545.
359563.

[12] A. Okubo, Dynamical aspects of animal grouping: Swarms, schools, flocks, and
herds, Advances in Biophysics 22 (1986) 1–94. doi:10.1016/0065-227X(86)
90003-1.

[13] J. Toner, Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking,
Physical Review E 58 (4) (1998) 4828–4858. doi:10.1103/PhysRevE.58.
4828.

[14] P. Blikstein, W. Rand, U. Wilensky, Participatory, embodied, multi-agent simu-
lation, in: H. Nakashima, M. P. Wellman, G. Weiss, P. Stone (Eds.), 5th Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MAS), ACM, Hakodate, Japan, 2006, pp. 1457–1458. doi:10.1145/1160633.
1160913.

[15] L. Gray, A Mathematician Looks at Wolfram’s New Kind of Science, Notices of
the American Mathematical Society 50 (2) (2003) 200–211.

[16] A. Efrima, D. Peleg, Distributed algorithms for partitioning a swarm of au-
tonomous mobile robots, Theoretical Computer Science 410 (14) (2009) 1355–
1368. doi:10.1016/j.tcs.2008.04.042.

31

http://dx.doi.org/10.3389/frobt.2018.00094
http://dx.doi.org/10.3389/frobt.2018.00094
http://dx.doi.org/10.1007/978-3-030-04771-9_26
http://dx.doi.org/10.1145/37402.37406
http://dx.doi.org/10.1145/1011767.1011810
http://dx.doi.org/10.1145/1011767.1011810
http://dx.doi.org/10.1007/978-3-540-89707-1_5
http://dx.doi.org/10.1007/978-3-540-89707-1_5
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1016/0065-227X(86)90003-1
http://dx.doi.org/10.1016/0065-227X(86)90003-1
http://dx.doi.org/10.1103/PhysRevE.58.4828
http://dx.doi.org/10.1103/PhysRevE.58.4828
http://dx.doi.org/10.1145/1160633.1160913
http://dx.doi.org/10.1145/1160633.1160913
http://dx.doi.org/10.1016/j.tcs.2008.04.042

[17] H.-Y. Chen, C. David, D. Kroening, P. Schrammel, B. Wachter, Synthesising
Interprocedural Bit-Precise Termination Proofs (T), in: M. B. Cohen, L. Grunske,
M. Whalen (Eds.), 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), IEEE, Lincoln, NE, USA, 2015, pp. 53–64. doi:
10.1109/ASE.2015.10.

[18] M. Y. R. Gadelha, F. R. Monteiro, J. Morse, L. C. Cordeiro, B. Fischer, D. A.
Nicole, ESBMC 5.0: An industrial-strength C model checker, in: M. Huchard,
C. Kästner, G. Fraser (Eds.), ACM/IEEE International Conference on Automated
Software Engineering (ASE), ACM, Montpellier, France, 2018, pp. 888–891.
doi:10.1145/3238147.3240481.

[19] G. Brat, J. A. Navas, N. Shi, A. Venet, IKOS: A Framework for Static Analysis
Based on Abstract Interpretation, in: D. Giannakopoulou, G. Salaün (Eds.), 12th
International Conference on Software Engineering and Formal Methods (SEFM),
Vol. 8702 of LNCS, Springer, Grenoble, France, 2014, pp. 271–277. doi:10.
1007/978-3-319-10431-7_20.

[20] A. Venet, The Gauge Domain: Scalable Analysis of Linear Inequality Invariants, in:
P. Madhusudan, S. A. Seshia (Eds.), 24th International Conference on Computer
Aided Verification (CAV), Vol. 7358 of LNCS, Springer, Berkeley, CA, USA,
2012, pp. 139–154. doi:10.1007/978-3-642-31424-7_15.

[21] Z. Rakamaric, M. Emmi, SMACK: Decoupling Source Language Details from
Verifier Implementations, in: A. Biere, R. Bloem (Eds.), 26th International Con-
ference on Computer Aided Verification (CAV), Vol. 8559 of LNCS, Springer,
Vienna, Austria, 2014, pp. 106–113. doi:10.1007/978-3-319-08867-9_7.

[22] A. Lal, S. Qadeer, S. K. Lahiri, A Solver for Reachability Modulo Theories, in:
P. Madhusudan, S. A. Seshia (Eds.), 24th International Conference on Computer
Aided Verification (CAV), Vol. 7358 of LNCS, Springer, Berkeley, CA, USA,
2012, pp. 427–443. doi:10.1007/978-3-642-31424-7_32.

[23] D. Beyer, M. E. Keremoglu, CPAchecker: A Tool for Configurable Software Veri-
fication, in: G. Gopalakrishnan, S. Qadeer (Eds.), 23rd International Conference
on Computer Aided Verification (CAV), Vol. 6806 of LNCS, Springer, Snowbird,
UT, USA, 2011, pp. 184–190. doi:10.1007/978-3-642-22110-1_16.

[24] S. Löwe, CPAchecker with Explicit-Value Analysis Based on CEGAR and In-
terpolation - (Competition Contribution), in: N. Piterman, S. A. Smolka (Eds.),
19th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), Vol. 7795 of LNCS, Springer, Rome, Italy, 2013,
pp. 610–612. doi:10.1007/978-3-642-36742-7_44.

[25] D. Weyns, T. Holvoet, A Formal Model for Situated Multi-Agent Systems, Funda-
menta Informaticae 63 (2-3) (2004) 125–158.

[26] T. M. Liggett, Interacting Particle Systems, Classics in Mathematics, Springer,
2005. doi:10.1007/b138374.

32

http://dx.doi.org/10.1109/ASE.2015.10
http://dx.doi.org/10.1109/ASE.2015.10
http://dx.doi.org/10.1145/3238147.3240481
http://dx.doi.org/10.1007/978-3-319-10431-7_20
http://dx.doi.org/10.1007/978-3-319-10431-7_20
http://dx.doi.org/10.1007/978-3-642-31424-7_15
http://dx.doi.org/10.1007/978-3-319-08867-9_7
http://dx.doi.org/10.1007/978-3-642-31424-7_32
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-642-36742-7_44
http://dx.doi.org/10.1007/b138374

[27] A. Scheidler, A. Brutschy, E. Ferrante, M. Dorigo, The k-Unanimity Rule for
Self-Organized Decision-Making in Swarms of Robots, IEEE Transactions on
Cybernetics 46 (5) (2016) 1175–1188. doi:10.1109/TCYB.2015.2429118.

[28] M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, Swarm robotics: A review
from the swarm engineering perspective, Swarm Intelligence 7 (1) (2013) 1–41.
doi:10.1007/s11721-012-0075-2.

[29] D. Angluin, J. Aspnes, D. Eisenstat, A simple population protocol for fast robust
approximate majority, Distributed Computing 21 (2) (2008) 87–102. doi:10.
1007/s00446-008-0059-z.

[30] M. Blondin, J. Esparza, S. Jaax, Peregrine: A Tool for the Analysis of Population
Protocols, in: H. Chockler, G. Weissenbacher (Eds.), 30th International Conference
on Computer Aided Verification (CAV), Vol. 10981 of LNCS, Springer, Oxford,
UK, 2018, pp. 604–611. doi:10.1007/978-3-319-96145-3_34.

[31] M. Dastani, A Survey of Multi-agent Programming Languages and Frameworks, in:
O. Shehory, A. Sturm (Eds.), Agent-Oriented Software Engineering - Reflections
on Architectures, Methodologies, Languages, and Frameworks, Springer, 2014,
pp. 213–233. doi:10.1007/978-3-642-54432-3_11.

[32] C.-E. Hrabia, M. Lützenberger, S. Albayrak, Towards adaptive multi-robot systems:
Self-organization and self-adaptation, The Knowledge Engineering Review 33.
doi:10.1017/S0269888918000176.

[33] N. Koenig, A. Howard, Design and use paradigms for Gazebo, an open-source
multi-robot simulator, in: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Vol. 3, IEEE, Sendai, Japan, 2004, pp. 2149–2154. doi:
10.1109/IROS.2004.1389727.

[34] E. Rohmer, S. P. N. Singh, M. Freese, V-REP: A versatile and scalable robot
simulation framework, in: IEEE/RSJ International Conference on Intelligent
Robots and Systems, IEEE, Tokyo, Japan, 2013, pp. 1321–1326. doi:10.1109/
IROS.2013.6696520.

[35] J. Lächele, A. Franchi, H. H. Bülthoff, P. Robuffo Giordano, SwarmSimX:
Real-Time Simulation Environment for Multi-robot Systems, in: D. Hutchison,
T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nier-
strasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y.
Vardi, G. Weikum, I. Noda, N. Ando, D. Brugali, J. J. Kuffner (Eds.), 3rd Interna-
tional Conference on Simulation, Modeling, and Programming for Autonomous
Robots (SIMPAR), Vol. 7628 of LNCS, Springer, Tsukuba, Japan, 2012, pp.
375–387. doi:10.1007/978-3-642-34327-8_34.

[36] G. Echeverria, S. Lemaignan, A. Degroote, S. Lacroix, M. Karg, P. Koch,
C. Lesire, S. Stinckwich, Simulating Complex Robotic Scenarios with MORSE,
in: D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos,

33

http://dx.doi.org/10.1109/TCYB.2015.2429118
http://dx.doi.org/10.1007/s11721-012-0075-2
http://dx.doi.org/10.1007/s00446-008-0059-z
http://dx.doi.org/10.1007/s00446-008-0059-z
http://dx.doi.org/10.1007/978-3-319-96145-3_34
http://dx.doi.org/10.1007/978-3-642-54432-3_11
http://dx.doi.org/10.1017/S0269888918000176
http://dx.doi.org/10.1109/IROS.2004.1389727
http://dx.doi.org/10.1109/IROS.2004.1389727
http://dx.doi.org/10.1109/IROS.2013.6696520
http://dx.doi.org/10.1109/IROS.2013.6696520
http://dx.doi.org/10.1007/978-3-642-34327-8_34

D. Tygar, M. Y. Vardi, G. Weikum, I. Noda, N. Ando, D. Brugali, J. J. Kuffner
(Eds.), 3rd International Conference on Simulation, Modeling, and Programming
for Autonomous Robots (SIMPAR), Vol. 7628 of LNCS, Springer, Tsukuba, Japan,
2012, pp. 197–208. doi:10.1007/978-3-642-34327-8_20.

[37] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla, N. Math-
ews, E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari, L. M. Gambardella,
M. Dorigo, ARGoS: A modular, parallel, multi-engine simulator for multi-robot
systems, Swarm Intelligence 6 (4) (2012) 271–295. doi:10.1007/S11721-012-
0072-5.

[38] L. Pitonakova, M. Giuliani, A. G. Pipe, A. F. T. Winfield, Feature and Performance
Comparison of the V-REP, Gazebo and ARGoS Robot Simulators, in: M. Giuliani,
T. Assaf, M. E. Giannaccini (Eds.), 19th Annual Conference Towards Autonomous
Robotic Systems (TAROS), Vol. 10965 of LNCS, Springer, Bristol, UK, 2018, pp.
357–368. doi:10.1007/978-3-319-96728-8_30.

[39] A. Lomuscio, H. Qu, F. Raimondi, MCMAS: An open-source model checker for
the verification of multi-agent systems, International Journal on Software Tools for
Technology Transfer 19 (1) (2017) 9–30. doi:10.1007/s10009-015-0378-x.

[40] L. Bayındır, A review of swarm robotics tasks, Neurocomputing 172 (442) (2016)
292–321. doi:10.1016/j.neucom.2015.05.116.

[41] L. Pitonakova, R. Crowder, S. Bullock, Behaviour-data relations modelling
language for multi-robot control algorithms, in: IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), IEEE, 2017, pp. 727–732.
doi:10.1109/IROS.2017.8202231.

[42] J. Bachrach, J. McLurkin, A. Grue, Protoswarm: A language for programming
multi-robot systems using the amorphous medium abstraction, in: 7th International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS),
Vol. 3, IFAAMAS, 2008, pp. 1175–1178.

[43] J. Bachrach, J. Beal, J. McLurkin, Composable continuous-space programs for
robotic swarms, Neural Computing and Applications 19 (6) (2010) 825–847.
doi:10.1007/s00521-010-0382-8.

[44] F. Damiani, M. Viroli, J. Beal, A type-sound calculus of computational fields,
Science of Computer Programming 117 (2016) 17–44. doi:10.1016/j.scico.
2015.11.005.

[45] D. Weerasooriya, A. S. Rao, K. Ramamohanarao, Design of a Concurrent Agent-
Oriented Language, in: M. J. Wooldridge, N. R. Jennings (Eds.), International
Workshop on Agent Theories, Architectures, and Languages, Vol. 890 of LNCS,
Springer, Amsterdam, The Netherlands, 1994, pp. 386–401. doi:10.1007/3-
540-58855-8_25.

34

http://dx.doi.org/10.1007/978-3-642-34327-8_20
http://dx.doi.org/10.1007/S11721-012-0072-5
http://dx.doi.org/10.1007/S11721-012-0072-5
http://dx.doi.org/10.1007/978-3-319-96728-8_30
http://dx.doi.org/10.1007/s10009-015-0378-x
http://dx.doi.org/10.1016/j.neucom.2015.05.116
http://dx.doi.org/10.1109/IROS.2017.8202231
http://dx.doi.org/10.1007/s00521-010-0382-8
http://dx.doi.org/10.1016/j.scico.2015.11.005
http://dx.doi.org/10.1016/j.scico.2015.11.005
http://dx.doi.org/10.1007/3-540-58855-8_25
http://dx.doi.org/10.1007/3-540-58855-8_25

[46] R. H. Bordini, M. Fisher, W. Visser, M. Wooldridge, Verifying Multi-agent Pro-
grams by Model Checking, Autonomous Agents and Multi-Agent Systems 12 (2)
(2006) 239–256. doi:10.1007/s10458-006-5955-7.

[47] S. Bucheli, D. Kroening, R. Martins, A. Natraj, From AgentSpeak to C for Safety
Considerations in Unmanned Aerial Vehicles, in: C. Dixon, K. Tuyls (Eds.), 16th
Annual Conference Towards Autonomous Robotic Systems (TAROS), Vol. 9287
of LNCS, Springer, Liverpool, UK, 2015, pp. 69–81. doi:10.1007/978-3-319-
22416-9_9.

[48] A. Philippou, M. Toro, M. Antonaki, Simulation and Verification in a Process
Calculus for Spatially-Explicit Ecological Models, Scientific Annals of Computer
Science 23 (1) (2013) 119–167. doi:10.7561/SACS.2013.1.119.

[49] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, A. Santi, Multi-agent oriented
programming with JaCaMo, Science of Computer Programming 78 (6) (2013)
747–761. doi:10.1016/j.scico.2011.10.004.

[50] R. H. Bordini, J. F. Hbner, M. Wooldridge, Programming Multi-Agent Systems
in AgentSpeak Using Jason, Wiley Series in Agent Technology, John Wiley and
Sons, Ltd, 2007. doi:10.1002/9780470061848.

[51] M. O’Brien, R. C. Arkin, D. Harrington, D. Lyons, S. Jiang, Automatic Verification
of Autonomous Robot Missions, in: D. Brugali, J. F. Broenink, T. Kroeger, B. A.
MacDonald (Eds.), 4th International Conference on Simulation, Modeling, and
Programming for Autonomous Robots (SIMPAR), Vol. 8810 of LNCS, Springer,
Bergamo, Italy, 2014, pp. 462–473. doi:10.1007/978-3-319-11900-7_39.

[52] R. De Nicola, D. Latella, A. L. Lafuente, M. Loreti, A. Margheri, M. Massink,
A. Morichetta, R. Pugliese, F. Tiezzi, A. Vandin, The SCEL Language: Design,
Implementation, Verification, in: Software Engineering for Collective Autonomic
Systems, Vol. 8998 of LNCS, Springer, 2015, pp. 3–71. doi:10.1007/978-3-
319-16310-9_1.

[53] V. Grimm, E. Revilla, U. Berger, F. Jeltsch, W. M. Mooij, S. F. Railsback, H.-
H. Thulke, J. Weiner, T. Wiegand, D. L. DeAngelis, Pattern-Oriented Modeling
of Agent-Based Complex Systems: Lessons from Ecology, Science 310 (5750)
(2005) 987–991. doi:10.1126/science.1116681.

[54] J. Hillston, Challenges for Quantitative Analysis of Collective Adaptive Systems,
in: M. Abadi, A. Lluch-Lafuente (Eds.), 8th International Symposium on Trust-
worthy Global Computing (TGC), Revised Selected Papers, Vol. 8358 of LNCS,
Springer, Buenos Aires, Argentina, 2013, pp. 14–21. doi:10.1007/978-3-319-
05119-2_2.

[55] L. Tesfatsion, Agent-Based Computational Economics: Growing Economies
From the Bottom Up, Artificial Life 8 (1) (2002) 55–82. doi:10.1162/
106454602753694765.

35

http://dx.doi.org/10.1007/s10458-006-5955-7
http://dx.doi.org/10.1007/978-3-319-22416-9_9
http://dx.doi.org/10.1007/978-3-319-22416-9_9
http://dx.doi.org/10.7561/SACS.2013.1.119
http://dx.doi.org/10.1016/j.scico.2011.10.004
http://dx.doi.org/10.1002/9780470061848
http://dx.doi.org/10.1007/978-3-319-11900-7_39
http://dx.doi.org/10.1007/978-3-319-16310-9_1
http://dx.doi.org/10.1007/978-3-319-16310-9_1
http://dx.doi.org/10.1126/science.1116681
http://dx.doi.org/10.1007/978-3-319-05119-2_2
http://dx.doi.org/10.1007/978-3-319-05119-2_2
http://dx.doi.org/10.1162/106454602753694765
http://dx.doi.org/10.1162/106454602753694765

[56] J. Hillston, A compositional approach to performance modelling, Ph.D. thesis,
University of Edinburgh, UK (1994).

[57] M. Loreti, J. Hillston, Modelling and Analysis of Collective Adaptive Systems
with CARMA and its Tools, in: M. Bernardo, R. De Nicola, J. Hillston (Eds.),
Formal Methods for the Quantitative Evaluation of Collective Adaptive Systems
- 16th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems (SFM), Advanced Lectures, Vol. 9700 of
LNCS, Springer, 2016, pp. 83–119. doi:10.1007/978-3-319-34096-8_4.

[58] I. Suzuki, M. Yamashita, Distributed Anonymous Mobile Robots: Formation
of Geometric Patterns, SIAM Journal on Computing 28 (4) (1999) 1347–1363.
doi:10.1137/S009753979628292X.

[59] C. Auger, Z. Bouzid, P. Courtieu, S. Tixeuil, X. Urbain, Certified Impossibility
Results for Byzantine-Tolerant Mobile Robots, in: T. Higashino, Y. Katayama,
T. Masuzawa, M. Potop-Butucaru, M. Yamashita (Eds.), 15th International Sym-
posium Stabilization, on Safety, and Security of Distributed Systems (SSS), Vol.
8255 of LNCS, Springer, Osaka, Japan, 2013, pp. 178–190. doi:10.1007/978-
3-319-03089-0_13.

[60] G. Kant, A. Laarman, J. Meijer, J. van de Pol, S. Blom, T. van Dijk, LTSmin:
High-Performance Language-Independent Model Checking, in: C. Baier, C. Tinelli
(Eds.), 21st International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), Vol. 9035 of LNCS, Springer, London, UK,
2015, pp. 692–707. doi:10.1007/978-3-662-46681-0_61.

[61] A. R. Bradley, SAT-Based Model Checking without Unrolling, in: R. Jhala, D. A.
Schmidt (Eds.), 12th International Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI), Vol. 6538 of LNCS, Springer, Austin, TX,
USA, 2011, pp. 70–87. doi:10.1007/978-3-642-18275-4_7.

[62] A. Cimatti, A. Griggio, Software Model Checking via IC3, in: P. Madhusudan,
S. A. Seshia (Eds.), 24th International Conference on Computer Aided Verification
(CAV), Vol. 7358 of LNCS, Springer, Berkeley, CA, USA, 2012, pp. 277–293.
doi:10.1007/978-3-642-31424-7_23.

[63] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover,
M. Roveri, S. Tonetta, The nuXmv Symbolic Model Checker, in: A. Biere,
R. Bloem (Eds.), 26th International Conference on Computer Aided Verifica-
tion (CAV), Vol. 8559 of LNCS, Springer, Vienna, Austria, 2014, pp. 334–342.
doi:10.1007/978-3-319-08867-9_22.

[64] A. Legay, B. Delahaye, S. Bensalem, Statistical Model Checking: An Overview,
in: International Conference on Runtime Verification (RV), Vol. 6418 of LNCS,
Springer, 2010, pp. 122–135. doi:10.1007/978-3-642-16612-9_11.

[65] B. Herd, S. Miles, P. McBurney, M. Luck, Quantitative Analysis of Multiagent Sys-
tems Through Statistical Model Checking, in: M. Baldoni, L. Baresi, M. Dastani

36

http://dx.doi.org/10.1007/978-3-319-34096-8_4
http://dx.doi.org/10.1137/S009753979628292X
http://dx.doi.org/10.1007/978-3-319-03089-0_13
http://dx.doi.org/10.1007/978-3-319-03089-0_13
http://dx.doi.org/10.1007/978-3-662-46681-0_61
http://dx.doi.org/10.1007/978-3-642-18275-4_7
http://dx.doi.org/10.1007/978-3-642-31424-7_23
http://dx.doi.org/10.1007/978-3-319-08867-9_22
http://dx.doi.org/10.1007/978-3-642-16612-9_11

(Eds.), 3rd International Workshop on Engineering Multi-Agent Systems (EMAS).
Revised, Selected, and Invited Papers, Vol. 9318 of LNCS, Springer, Istanbul,
Turkey, 2015, pp. 109–130. doi:10.1007/978-3-319-26184-3_7.

37

http://dx.doi.org/10.1007/978-3-319-26184-3_7

Appendix A. C encoding of a LAbS system

Listing 1: C encoding of the flocking example (Table 9).

N = ... // Number of agents
K_I = ... // Number of attributes
K_L = ... // Number of stigmergy keys
B = ... // Number of transitions

int v[N]; // v[i] --> program counter for agent i
int I[N][K_I], Lvalue[N][K_L], Ltstamp[N][K_L]; // integer values for all keys
bool Zc[N][K_L], Zp[N][K_L] // Zc[i][j]=1 --> key j is in Zc of agent i (or Zp)

/* System-level actions */
void attr(int id, int key, int value) { ... } // encodes "key <- value"
void lstig(int id, int key, int value) { ... } // encodes "key <~ value"
bool link(int a, int b, int key) { ... } // link predicate true iff. Ia, La, Ib, Lb � ϕkey
void confirm(void) { ... }
void propagate(void) { ... }

/* Agent-level actions */
void stmt1(int tid) { // Encoding of "x, y <- (x + dir_x) % G, (y + dir_y) % G"
assume((v[tid] == 1));

int val0 = (I[tid][0]) + (Lvalue[tid][0]) % G;
int val1 = (I[tid][1]) + (Lvalue[tid][1]) % G;
attr(tid, 0, val0);
attr(tid, 1, val1);
Zc[tid][0] = 1;
Zc[tid][1] = 1;
setHin(tid, 1);

v[tid] = 1;
}

/* Initialisation and properties to verify */
void init() { ... }
void monitor(void) { ... }
void check(void) {
assert(Lvalue[0][0] == Lvalue[1][0] && ... && Lvalue[N-2][1] == Lvalue[N-1][1]);

}

/* Scheduler */
int main(void) {
init();
int agent = *;
assume(agent < N);

for (round=0;round<B;round++) { // execution loop
if (*) {
int choice = * ;
assume(choice >= 0 && choice < 1);
switch (choice) {
case 0: stmt1(agent);

}
}
else {
if (*) propagate();
else confirm();

}

monitor();
agent = agent + 1 % N; // round-robin scheduling

}

check();
}

38

	Introduction
	The LAbS language
	Processes and expressions
	Link predicates
	Agents and systems
	Tuples and atomic assignments
	Clocks and verification

	Modeling flocking behaviour
	Modeling the environment
	Semantics of situated systems
	Case studies
	Foraging
	Opinion formation
	Population protocols

	Verification of population protocols

	Conclusion, and Related and Future Work
	C encoding of a LAbS system

