
Attributed Point-to-Point Communication in
R-CHECK⋆

Yehia Abd Alrahman1[0000−0002−4866−6931], Shaun
Azzopardi2[0000−0002−2165−3698], Luca Di Stefano3[0000−0003−1922−3151], and Nir

Piterman1[0000−0002−8242−5357]

1 University of Gothenburg and Chalmers University of Technology
2 University of Malta

3 TU Wien, Institute of Computer Engineering, Treitlstraße 3, 1040 Vienna, Austria

Abstract. Autonomous multi-agent, or more generally, collective adap-
tive systems, use different modes of communication to support their
autonomy and ease of interaction. In order to enable modelling and
reasoning about such systems, we need frameworks that combine many
forms of communication. R-CHECK is a modelling, simulation, and veri-
fication environment supporting the development of multi-agent systems,
providing attributed channelled broadcast and multicast communication.
That is, the communication is not merely derived based on connectivity
to channels but in addition based on properties of targeted receivers.
Another common communication mode is point-to-point, wherein agents
communicate with each other directly. Capturing point-to-point through
R-CHECK’s multicast and broadcast is possible but cumbersome, ineffi-
cient, and prone to interference.
Here, we extend R-CHECK with attributed point-to-point communication,
which can be established based on identity or properties of participants.
We also support model-checking of point-to-point by extending linear
temporal logic with observation descriptors related to the participants
in this communication mode. We argue that these extensions simplify
the design of models, and demonstrate their benefits by means of an
illustrative case study.

1 Introduction

Multi-agent Systems (MAS) are some of the most interesting and challenging
systems to design. This is particularly the case, when tasks of the system require
interaction between agents based on mutual interest and changing tasks. Machines
operating in this way need to create opportunistic interactions. This is possible if
agents can reconfigure their interaction interfaces and dynamically form groups at
run-time based on changes in their context. We call such systems Reconfigurable
MAS [15,14]. We are interested in designing such systems and, due to the

⋆ This work is funded by the ERC consolidator grant D-SynMA (No. 772459) and
the Swedish research council grants: SynTM (No. 2020-03401) and VR project (No.
2020-04963).

2 Y. Abd Alrahman et al.

challenge involved, supporting reasoning about the behaviour of designed systems
to improve their reliability and security.

MAS are often programmed using high-level languages that support domain-
specific features of MAS. For example, emergent behaviour [2,20,3], interac-
tions [4], intentions [8], knowledge [13], and so forth. These descriptions are
very involved to be directly encoded in plain transition systems. Thus, we often
want programming abstractions that focus on the domain concepts, abstract
away from low-level details, and consequently reduce the size of the model under
consideration. The rationale is that designing a system requires having the right
level of abstraction to represent its behaviour. Furthermore, one would like to
reason about the design to check that it indeed fulfils its requirements. Model
checking is a prominent technique for such reasoning. Thus, model checking tools
that support high-level features of Reconfigurable MAS are required to enable
reasoning about high-level features of designs. We need to support an intuitive
description of programs, actions, protocols, reconfiguration, self-organisation, etc.

We have previously presented ReCiPe [5,4] and R-CHECK [1], a framework
and a toolkit for designing, simulating, and verifying reconfigurable multi-agent
systems. ReCiPe supported multiple modes of communication through predi-
cated communication on broadcast and multicast channels. Agents could use a
predicated broadcast to target only agents satisfying specific conditions. They
could use a predicated multicast to ensure that all participants satisfy certain
conditions. A unique feature of this framework is its active support of reconfigu-
ration. ReCiPe allows agents to connect and disconnect from multi-cast channels
during runtime. Thus, the discovery of interested agents (through broadcast) and
the formation of ad-hoc groups with them (through multicast) becomes simple
and intuitive. While ReCiPe presented a theoretical model based on transition
systems and their symbolic versions, R-CHECK extended it with a high-level
modelling language. R-CHECK enables reasoning about systems through simu-
lation and model checking. In order to reason about intentions of senders, we
extended ltl to ltol, which allows next operators that are conditioned upon
contents, predicates, and senders of messages. This allows further insights into
the interactions that happen in the system to be included in logical specifications.
ltol model checking was supported through a translation to nuXmv [7].

One of the challenges of modeling with R-CHECK is to capture (anonymously)
the existence of recipients. Indeed, both broadcast and multicast channels allow
messages through in the case that there are no recipients. In order to model
situations in which knowledge of the existence of others is needed, we made
assumptions about sufficiently many participants being available. Based on this
assumption, we were able to emulate point-to-point communication through a
combination of broadcast and multicast messages. However, this was cumbersome,
inefficient, and prone to interference, which could easily lead to deadlock. In
addition, encoding point-to-point communication through a protocol of coordi-
nation that requires multiple messages, created complicated models that were
hard to understand and reason about. Here we extend ReCiPe and R-CHECK

by supporting point-to-point communication.

Attributed Point-to-Point Communication in R-CHECK 3

Particularly, our new contributions are:

(i) we extend the theoretical model ReCiPe and its implementation in R-CHECK

by point-to-point communication. Satisfying the spirit of the formalism,
point-to-point communication is predicated on attributes, allowing to request
information from suppliers based on their features. It is also possible to
communicate based on known identities. As usual, messages have a payload
but come with the assurance that the interaction has happened directly
between two participants.

(ii) we extend ltol with additional observation predicates allowing to analyze
the contents of point-to-point communications. Modelers can distinguish
between point-to-point and “cast” communication. They are also able to
reason about the intentions of getters and suppliers.

This specialised integration provides a powerful tool that permits verifying
high-level features of Reconfigurable MAS. Indeed, we can reason about systems
both from an individual and a system level.

This article is structured as follows: in Sect. 2, we give a background on
ReCiPe [5,4], the underlying theory of R-CHECK, on the modelling language
of R-CHECK, and the specification language ltol. In Sect. 3, we augment the
language of R-CHECK with point-to-point communication and its symbolic
semantics. In Sect. 4 we extend the ltol logic to allow specification of point-to-
point communication. In Sect. 5, we provide a nontrivial case study to model
autonomous resource allocation. Finally, we report concluding remarks in Sect. 6.

2 Background Materials

We present background materials necessary to introduce our language extension,
namely the ReCiPe formalism and the R-CHECK language.

2.1 The ReCiPe Formalism

ReCiPe [5,4] is a symbolic concurrent formalism that serves as the underlying
semantics of R-CHECK. ReCiPe relies on (attributed-) channel communication.
Agents agree on a set of channel names ch to exchange messages on. These
messages carry data (in variables d) specified by senders. Agents can constrain the
targets of communication by attributing the messages through predicates, similar
to AbC [2,3]. As opposed to the latter, ReCiPe supports dynamic reconfiguration
by letting agents disconnect from channels. Moreover, ReCiPe supports two kinds
of communication, channelled-broadcast and channelled-multicast. In channelled-
broadcast, the communication is non-blocking, that is the communication can still
go through if a targeted receiver is not ready to engage. Contrarily, in multicast,
the communication is blocking until all targeted receivers are willing to accept the
message and engage in the communication. Thus, the set of channels ch includes
a channel used exclusively for broadcast, ⋆, which agents cannot disconnect from.

4 Y. Abd Alrahman et al.

Usually, broadcast is used for service discovery: for instance, when agents
are unaware of the existence of each other, and want to be discovered or to
establish links for further interaction. On the other hand, multicast can capture
a more structured interaction where agents have dedicated links to interact on.
The reconfiguration of interaction interfaces in ReCiPe makes it possible to
integrate the two ways of communication in a meaningful way. That is, agents
may start with a flat communication structure and use broadcast to discover
others. With ReCiPe’s channel passing, agents can dynamically build dedicated
communication structures based on channel references they exchange.

In order to target a subset of agents, in an interaction, sending agents rely
on property identifiers. That is, identifiers that senders use to specify properties
required of targeted receivers. The set of property identifiers is pv. For instance,
agent k may specify that it wants to communicate on channel a with all agents
that listen to a and satisfy the property BatteryLevel ≥ 30%. In other words,
property identifiers pv are used by agents to indirectly specify constraints on the
targeted receivers in a similar manner to the attribute-based paradigm [2,3].

However, each agent has a way to relate property identifiers to its local state
through a re-labelling function. We have generalised this function in R-CHECK to
deal with more sophisticated expressions. Thus, agents specify properties anony-
mously using these identifiers, which are later translated to the corresponding
receiver’s local state. Messages are then only delivered to receivers that satisfy
the property after re-labelling.

Formally, an agent is defined as a Discrete System (DS) [19]:

Definition 1 (Agent). An agent is a tuple A = ⟨V, f, gs, gr, T s, T r, θ⟩,
• V is a finite set of typed local variables.
• f : pv → V is a function, associating propriety identifiers to local variables.
• gs(V,ch,d,pv) is a send guard specifying the property of the targeted receivers,
based on the current evaluation of V, ch, and d, which is checked against every
receiver j after applying fj.

• gr(V,ch) is a receive guard describing the connectedness of an agent to a
channel ch. We let gr(V, ⋆) = true, i.e., every agent is always connected to the
broadcast channel.

• T s(V, V ′,d,ch) and T r(V, V ′,d,ch) are assertions describing, respectively,
the send and receive transition relations. We assume that an agent is broadcast
input-enabled, i.e., ∀v,d ∃v′ s.t. T r(v, v′,d, ⋆).

• θ is an assertion on V describing the initialization of the agent.

In this definition, a state of an agent s is an assignment to the agent’s local
variables V, i.e., for v ∈ V if Dom(v) is the domain of v, then s is an element
in

∏
v∈V Dom(v). In case that all variables range over a finite domain then the

number of states is finite. A state is initial if its assignment to V satisfies θ. Note
that A is a discrete system, and thus we use the set V ′ to denote the primed
copy of V . That is, V ′ stores the next assignment to V . Moreover, we use Id to
denote the assertion

∧
v∈V v = v′. That is, V is kept unchanged. We use d to

denote an assignment to the data variables d. We also abuse the notation and
use f for the assertion

∧
pv∈pv pv = f(pv).

Attributed Point-to-Point Communication in R-CHECK 5

Agents exchange messages of the form m = (ch,d, i, π), where “ch” is the
channel m is sent on, “d” the data it carries, “i” the sender identity (we assume
a unique identifier for each agent), and “π” the assertion specifying the property
of targeted receivers. The predicate π is obtained by grounding the sender’s send
guard on the sender’s current state, used channel ch, and exchanged data d.

Send transition relations T s characterise what messages may be sent, with
one message sent at each point in time. While receive transition relations T r

characterise the reaction of a receiving agent to a message.
We use keep(X) to denote that a set of variables X is not changed by a

transition (either send or receive). That is, keep(X) is equivalent to the assertion∧
x∈X x = x′. Note that Id = keep(V).
A set of agents agreeing on property identifiers pv, data variables d, and

channels ch defines a system. We give the semantics of systems in terms of
predicates to facilitate efficient symbolic analysis (through BDD or SMT). We
use

⊎
for disjoint union.

Formally, a ReCiPe system is also a DS, defined as follows:

Definition 2 (System). Given a set {Ai}i of agents, a system is S = ⟨V , ρ, θ⟩,
where V =

⊎
i

Vi, a state of the system “s” is in
∏

i

∏
v∈Vi

Dom(v) and the initial

assertion θ =
∧
i

θi. The transition relation ρ of S is as follows:

ρ = ∃ch. ∃d.
∨
k

T s
k (Vk, V

′
k ,d, ch)∧

∧
j ̸=k

∃pv.fj ∧


grj (Vj , ch) ∧ gsk(Vk, ch,d, pv)∧

T r
j (Vj , V

′
j ,d, ch)

∨ ¬grj (Vj , ch) ∧ Idj

∨ ¬gsk(Vk, ch,d, pv) ∧ ch = ⋆ ∧ Idj




The transition relation ρ describes two modes of interactions: blocking mul-
ticast and non-blocking broadcast. Formally, ρ relates a system state s to its
successors s′ given a message m = (ch,d, k, π). Namely, there exists an agent
k that sends a message with data d (an assignment to d) with assertion π (an
assignment to gsk) on channel ch and all other agents are either (a) connected to
channel ch, satisfy the send predicate π, and participate in the interaction (i.e.,
have a corresponding receive transition for the message), (b) not connected and
idle, or (c) do not satisfy the send predicate of a broadcast and idle. That is,
the agents satisfying π (translated to their local state by the conjunct ∃pv.fj)
and connected to channel ch (i.e., grj (s

j , ch)) get the message and perform a
receive transition. As a result of interaction, the state variables of the sender
and these receivers might be updated. The agents that are not connected to the
channel (i.e., ¬grj (sj , ch)) do not participate in the interaction and stay still. In
case of broadcast, namely when sending on ⋆, agents are always connected and
the set of receivers not satisfying π (translated again as above) stay still. Thus,
a blocking multicast arises when a sender is blocked until all connected agents
satisfy ∃pv.fj ∧π. The relation ensures that, when sending on a channel different

6 Y. Abd Alrahman et al.

from ⋆, the set of receivers is the full set of connected agents. On the broadcast
channel agents not satisfying the send predicate do not block the sender.

2.2 The R-CHECK Language

ReCiPe is a low-level formalism that is geared towards efficient BDD represen-
tation and model-checking; and thus is not meant to be used as a modelling
language. R-CHECK, in turn, is proposed to support high-level modelling of the
ReCiPe formalism. It allows the user to model with high-level primitives, while
hiding the underlying compilation to ReCiPe.

The syntax of R-CHECK is reported below.

(System) S ::= A(id, θ) | S1∥S2

An agent A is the basic building block of an R-CHECK system. We treat agents
as types where “A” can be instantiated as follows A(id, θ). That is, we create an
instance of “A” with identity id and an initial condition θ. Moreover, each agent
must define a receive predicate that specifies which channels the agent is connected
to. We assume that all agents are always connected to broadcast channels, but they
can choose to connect/disconnect multicast channels dynamically at run-time.

An R-CHECK system is a set of parallel agents. Here, we use the parallel
composition operator ∥ to inductively define a system.

That is, a system is either an instance of agent type or a parallel composition
of set of instances of (possibly) different types. The semantics of ∥ is fully captured
by ρ in Def. 2. It should be noted that the ∥ operator is used to build a closed
system as in Def. 2, which is later used to give a system-level predicate semantics.
That is, the semantics cannot be defined compositionally in terms of predicates as
otherwise we would need to use higher-order predicates to capture the semantics,
and thus inhibit efficient analysis. Recall that messages carry predicates that the
receiver must quantify over in usual compositional semantics.

The syntax of an R-CHECK process is inductively defined as follows.

(Process) P ::= C;P | P + P | rep P | C
(Command) C ::= l : C | ⟨Φ⟩x! π d U | ⟨Φ⟩x? U

An agent behaviour corresponds to an infinite repetition of a process P ,
denoted by repeat : P . A process P is either a command prefix process C;P ,
a non-deterministic choice between two processes P + P , a loop rep P , or a
command C. There are three types of commands corresponding to either a
labelled command, a message-send, or a message-receive. A command of the
form l :C is a syntactic labelling, only used to allow the model checker to reason
about syntactic elements. A command of the form ⟨Φ⟩x! π d U corresponds
to a message-send. Intuitively, the predicate Φ is an assertion over the current
assignments to local variables, i.e., is a pre-condition that must hold for the
transition to be taken; x is a placeholder (or a bound name) for a channel name.
Note that x may refer to the value of a local variable, since we allow local variables

Attributed Point-to-Point Communication in R-CHECK 7

to have the type channels. As the names suggest π and d are respectively the
sender predicate, and the assignment to data variables (i.e., the actual content of
the message). Lastly, U is the next assignment to local variables after taking the
transition. We use “!” to distinguish send transitions. A command of the form
⟨Φ⟩x? U corresponds to a message-receive. Differently from message-send, Φ can
also predicate on the incoming message, i.e., the assignment d. We use “?” to
distinguish receive transitions. It is important to note that receive commands
are evaluated based on the receive predicate mentioned above. That is, an agent
cannot receive on a channel that does not satisfy its receive predicate.

The semantics of R-CHECK is given by translating R-CHECK syntax initially
to symbolic automata where transitions labels encode R-CHECK commands and
states encode the control flow of processes. Once the symbolic automaton is
constructed then there is a direct compilation to the ReCiPe formalism which
serves as the underlying semantics of R-CHECK.

Technically speaking, the behaviour of each R-CHECK agent is represented by
a first-order predicate that is defined as a disjunction over the send and the receive
commands of that agent. Moreover, both send and receive commands can be
represented by a disjunctive normal form predicate of the form

∨
(
∧

j assertionj).
That is, a disjunct of all possible send/receive transitions enabled in each step of
a computation. For full exposition of the semantics, the reader is referred to [1].

3 Extending ReCiPe & R-CHECK with Attributed
Point-to-Point Communication

We propose a Point-to-Point, or unicast, communication extension to R-CHECK.
However, to be able to support such extension, we first need to extend the
semantic framework, i.e., ReCiPe.

ReCiPe with Point-to-Point Communication. There are several ways to
support Point-to-Point Communication in the literature. For instance, we can
use the complementary send/receive communication as in π-calculus [17] or the
tuple-space approach as in Klaim [10]. In our case, we decided to use a specialised
attributed Point-to-Point Communication that takes inspiration from the tuple-
space approach while keeping models amenable to formal verification. Note that
a tuple-space approach, where agents are allowed to put/get tuples to/from a
shared/private tuple-space, implies higher-order communication. A tuple can be
simply the code of an agent. Moreover, a tuple-space is usually modelled as a
parallel composition of existing tuples. This means that the size of the tuple
space can grow uncontrollably, and thus lead to verification problems.

Our approach consists of eliminating the verification-problematic tuple space,
and encoding it as parametric supply-transitions in the code of each agent.
Namely, we provide two primitives: get and supply. The get allows an agent to
nondeterministically get data from another agent either based on satisfaction
of a predicate gp or based on a named locality ℓ. That is, an agent can ask for

8 Y. Abd Alrahman et al.

data from another agent by either supplying the name of the targeted agent (i.e.,
its locality ℓ) or predicating on the state of the potential supplier. Instead of
creating a private tuple space for each agent, we provide local state-parametric
supply-transitions for agents willing to supply data to others. Namely, a supplier
is another agent with a matching supply transition. Note that matching here
can be attributed (i.e., based on predicate satisfaction) or directed (i.e., based
on named locality). Moreover, a locality ℓ can be either a static name like an
agent identity or the reserved word “any” to denote that any locality is allowed
to supply. Formally, we extend Def. 1 as follows.

Definition 3 (P-to-P Agent). A = ⟨V, f, gs, gr, gp, T s, T r, T G, T S, θ⟩,

• gp(V,pv) is a get-guard specifying the property of the targeted supplier, based
on the current evaluation of V of the getter and pv which is checked against
one supplier j after applying fj.

• T G(V, V ′,d, ℓ) is an assertion describing the get-transition relation. Namely,
given the current assignment to local variables V , the get-transition relation
specifies the data d the getter is interested in, from what locality ℓ, and the
updates to local variables V ′ if the transition is executed.

• T S(V, V ′,d, ℓ) is an assertion describing the supply-transition relation. Simi-
larly, the supply-transition relation specifies the data that the supplier is willing
to provide given that the assertion over V , V ′, and ℓ is satisfied.

• all other components are defined as before in Def. 1

Now, we are ready to define a ReCiPe system and its semantics. The construc-
tion of system is exactly as reported in Def. 2. The only thing that substantially
changes is the system-level semantics. Our goal is to provide a well-behaved
predicate semantics for point-to-point communication while co-existing with the
original broadcast and multicast semantics.

The main question that we need to answer is what happens when a point-
to-point communication transition is concurrently enabled with a broadcast or
multicast in a given state of the system. We could have prioritised one mode of
communication over another and define the semantics accordingly. However, we
decided to stay general and refrain from resolving nondeterminism at semantic
level. Thus, we decided to nondeterministically select one enabled transition.
This choice not only abstains from dealing with scheduling issues which are
rather implementation concerns, but also simplifies the semantics. Thus, the new
semantics is ρ̂ = ρ ∨ ρgs as reported below.

ρgs =∃ℓ.∃d.
∨
k

T G
k (Vk, V

′
k,d, ℓ) ∧

∨
j ̸=k

∃pv.fj ∧ T S
j (Vj , V

′
j ,d, ℓ) ∧

ℓ = j

∨
ℓ = any ∧ gp(Vk,pv)

 ∧
∧

i ̸=k,i ̸=j

Idi

Since we decided to refrain from resolving nondeterminism at semantic level,
we model the nondeterminism of selection as an or-predicate. That is, we consider

Attributed Point-to-Point Communication in R-CHECK 9

the original transition relation ρ in Def. 2, and we define an extension relation ρ̂
as an or-predicate over the original ρ and the point-to-point semantics.

Now, the extended transition relation ρ̂ describes three modes of interaction:
blocking multicast, non-blocking broadcast, and blocking unicast (or point-to-
point). In case of unicast, ρ̂ relates a system state s to its successors s′ given an
exchanged tuple t = (ℓ,d, k, π) where ℓ is a locality, d is a data assignment, k is
the getter identity, and π is the getter-predicate, obtained by initially evaluating
gp(Vk,pv) over the getter local state. Namely, there exists an agent k that gets
a tuple with data d (an assignment to d) with assertion π (an assignment to
gp(Vk,pv)) from locality ℓ and there exists another agent j such that either (a)
agent j is an exact match of the target locality, i.e., ℓ = j and can participate
in the interaction (i.e., have a corresponding supply transition for the tuple), or
(b) the target locality is any (i.e., any agent can match) and agent j satisfies the
get predicate. In either case, all other agents that are different from k and j stay
idle. If no supplier exists then the communication is blocked. That is, the whole
predicate will evaluate to false.

R-CHECK with Point-to-Point Communication. we are now ready to
extend R-CHECK with point-to-point communication. Intuitively, we provide
two commands for get and supply transitions, and specify the syntax of localities as
reported below. Here, we use · · · to refer to the existing commands in R-CHECK.

(Command) C ::= · · · | ⟨Φ⟩Get(π)@ℓU | ⟨Φ⟩Supply@ℓ d U

(locality) ℓ ::= k | self | any | B(ℓ)

A command of the form ⟨Φ⟩Get(π)@ℓU corresponds to a tuple-get. Intuitively,
the predicate Φ is an assertion over the current assignments to local variables
for the getter, i.e., a pre-condition that must hold before the transition can be
taken, π is the getter predicate, and ℓ is the locality of a potential supplier. Note
that Φ may also have place holders (or bound names) for tuple/message variables
to allow constraining the supplied data. As before, we use update U to denote
the next assignment to local variables after taking the transition. Similarly, a
command of the form ⟨Φ⟩Supply@ℓ d U corresponds to a tuple-supply transition.
Here, the component d represents the actual data that the supplier is providing.

A locality ℓ can be a supplier identity k, a self reference that is evaluated
to the identity of the agent, the keyword any which denotes that any supplier
is accepted to participate in the interaction, or a boolean expression over a
locality B(ℓ). Notice in the new semantics of ReCiPe, we limit the use of any
to attributed point-to-point interaction. That is, any is always evaluated with
respect to a getter predicate on the potential supplier. In case of missing getter
predicate, we treat the getter predicate as a true predicate. Moreover, a getter
predicate with ℓ ̸= any is always ignored.

The translation from the syntax of the new R-CHECK to ReCiPe is done
exactly as in [1]. The idea is that we translate R-CHECK agents into symbolic
automata, where the state of the automaton encodes the structure of an R-CHECK

process and the label of a transition encodes the current enabled command.

10 Y. Abd Alrahman et al.

4 Model Checking Point-to-Point LTOL Formulas

To reason about R-CHECK systems, we have previously introduced ltol, an
extension of the Linear Time Temporal logic (ltl) with the ability to refer and
therefore reason about agents interactions using observation descriptors.

Here we augment ltol observation descriptors to be able to refer to point-to-
point communication, the full logic is here (new elements in blue):

O ::= p2p | ¬p2p | ℓ | ¬ℓ | pv | ¬pv | ch | ¬ch | k | ¬k | d | ¬d | •∃O | •∀O |
O ∨O | O ∧O

φ ::= v | ¬v | φ ∨ φ | φ ∧ φ | φ U φ | φRφ | ⟨O⟩φ | [O]φ

where the proposition p2p denotes the type of the observation, ℓ denotes the
targeted locality, pv is a property identifier, ch is a channel name (identifying the
channel the current message is sent on), k is an agent identifier (indicating the
agent initiating the current interaction), and d is a data variable (whose value is
determined by the payload of the current message).

Note φ is classical LTL in negation normal form, with the next operator
replaced by ⟨O⟩φ and [O]φ, which are predicated by observation descriptors O.
These are built from referring to the different parts of the message, the added
point-to-point descriptors, and their Boolean combinations. Send predicates
(part of messages) are interpreted as sets of possible assignments to property
identifiers. Thus we include existential •∃O and universal •∀O quantifiers over
these assignments. Other operators such as U and R are standard “until” and
“release” operators in LTL.

For the full semantics of ltol see [1], here, due to lack of space, we describe
it informally and only introduce the formal semantics for the new atoms.

Recall that the transition relation of a ReCiPe system relates a system state
s to its successor s′ given an exchanged tuple t = (ℓ,d, k, π) in the point-to-point
case, while other modes of interaction feature a message m = (ch,d, k, π). Thus,
we interpret the modified ltol formulas over a system computation ρ, a function
from natural numbers N to 2V × (M ∪ T) where V is the set of state variable
propositions, M is the set of messages, and T is the set of tuples.

The original semantics considers only channelled messages, e.g., m ⊨ pv iff
for every assignment c ⊨ π we have c ⊨ pv. Satisfaction of ch and k propositions
depends whether they are in the tuple, similarly for d by comparing it to d.

The more interesting cases are those of •∃O and •∀O:

m ⊨ •∃O iff there is an assignment c ⊨ π such that (ch, d, k, {c}) ⊨ O
m ⊨ •∀O iff for every assignment c ⊨ π it holds that (ch, d, k, {c}) ⊨ O

To generalise these definitions to the extended setting, we use li, called
communication payload, to range over either a tuple ti or a message mi at time i.

We replicate these definitions for communications payload, in the obvious way,
with the same definitions, except that a ch is never satisfied for a point-to-point
payload. Negation and boolean combinations are dealt with in the standard way.

Attributed Point-to-Point Communication in R-CHECK 11

We give the formal semantics for the new propositions.

l ⊨ p2p iff l(ℓ) ̸= ⊥ and l ⊨ ¬p2p iff l(ℓ) = ⊥;
l ⊨ ℓ′ iff l(ℓ) = ℓ′ and l ⊨ ¬ℓ′ iff l(ℓ) ̸= ℓ;

Note l(ℓ) = ⊥ indicates the tuple is a message exchanged during non-point-to-
point communication. Intuitively, a payload l satisfies a locality proposition ℓ′ if
its locality component ℓ equals ℓ′ and does not satisfy ℓ′ otherwise. The negative
case also includes when l is a message, because l(ℓ) returns ⊥ in that case. We
assume that ⊥ is is different from all other localities. Moreover, a payload l
satisfies p2p if and only if l(ℓ) = ⊥, namely l is a message. Note that we can
use the keywords getter, supplier, sender to refer to the agent’s locality that is
responsible for exchange in R-CHECK, where the first two refer to p2p and the
latter for either broadcast or multicast. The embedding of the descriptors for
point-to-point to R-CHECK is done similar to [1].

The semantics of an ltol formula φ is defined for a computation ρ at a time
point i. We give semantics for formulas with observation descriptors, and other
formulas are interpreted exactly as in ltl.

ρ≥i ⊨ v iff si ⊨ v and ρ≥i ⊨ ¬v iff si ̸⊨ v;
ρ≥i ⊨ ⟨O⟩φ iff li ⊨ O and ρ≥i+1 ⊨ φ;
ρ≥i ⊨ [O]φ iff li ⊨ O implies ρ≥i+1 ⊨ φ.

The temporal formula ⟨O⟩φ is satisfied on the computation ρ at point i if the
payload li satisfies O and φ is satisfied on the suffix computation ρ≥i+1. On the
other hand, the formula [O]φ is satisfied on the computation ρ at point i if li
satisfying O implies that φ is satisfied on the suffix computation ρ≥i+1.

5 The Superiority of Attributed Point-to-Point

Despite the undeniable advantages of anonymous communication primitives such
as attributed broadcast, they still suffer from serious modelling issues. This is
more apparent when considering modelling under open-world assumption, which
is the main motivation behind anonymous communication. The latter allows
agents to interact while not being aware of the existence of each other. It also
facilitates seamless introduction of agents at run-time (or dynamic creation)
without disrupting the overall system behaviour (though this is currently not
supported by ReCiPe and R-CHECK).

Here, we consider the problem of designing protocols with deadlock freedom
and guaranteed progress in open systems. By definition, a protocol imposes
dependence relations among interacting agents where some agents provide services
that other agents consume. The problem occurs when an agent anonymously
requests for a service and later waits for a response that will never arrive, namely,
when no provider exists. The agent gets deadlocked because it cannot determine
whether the response is delayed or will never arrive.

We argue that our attributed point-to-point provides an elegant solution to
this problem without compromising anonymity. To showcase this, we consider the

12 Y. Abd Alrahman et al.

scenario of stable allocation in content delivery networks that was modelled in
the AbC calculus [3] which supports anonymous broadcast. The problem is about
matching equally sized sets of clients and servers based on order of preferences
such that there are no client and server in different matchings that both would
prefer each other rather than their current partners. We argue that the protocol
cannot be guaranteed to progress by only relying on anonymous broadcast.

The protocol in [3] relies on an open-world assumption whereby new agents
can join at any time. Due to anonymity and non-blocking of AbC broadcast, a
client broadcasts a proposal for servers to form a pair and waits for a response.
However, if the proposal is sent before any instance of servers is created, then
the proposal will be lost and the client will deadlock waiting for a response.
To overcome this, the protocol in [3] introduces a counter that starts counting
for a sufficiently large threshold, before it times out and the client proposes
again. However, it is possible (due to uncontrolled network delays) that in most
executions a positive response is received after the threshold is reached. Thus,
the protocol gets stuck at the stage of proposal and does not get to progress.
Here we show how to simply fix this problem.

We consider that servers and clients use the following data variables in inter-
action ID, LNK, RT, D,Act, where ID carries a locality, LNK carries a channel,
RT carries the rating of a server, D carries the demand of a client, and Act carries
an action name. A client uses the local variables rating, Partner, xPartner, lnk,
demand to control its behaviour, where “rating” stores the rating of current con-
nected server, “Partner” and “xPartner” store the locality of current and previous
connected server; “lnk” stores a link that may be received; “demand” can take
“H” for high demand service and “L” for low demand service of the client.

A generic client’s initial condition θc is: rating = Partner = xPartner = lnk = ⊥,
specifying that the client is not connected to any server. We can later create differ-
ent clients with different demands. The receive guard grc is (ch = ⋆) ∨ (ch = lnk).
That is, reception is always enabled on broadcast and on a channel that matches
the value of lnk. Now, the behaviour of a client is reported in the R-CHECK

process PC below:

PC ≜ repeat
⟨rating ̸= “H” ∧ rating ̸= RT⟩Get(true)@any

[rating := RT; xPartner := Partner;Partner := ID; lnk := LNK];

[

⟨xPartner = “⊥”⟩lnk!(true)(ID = id,D = demand)[lnk := ⊥]

+

⟨xPartner ̸= “⊥”⟩Get(true)@xPartner[xPartner := “⊥”];

lnk!(true)(ID = id,D = demand)[lnk := ⊥]

]

+ ⟨true⟩Supply@self(Act = “dissolve”)
[rating := Partner := xPartner := lnk :=“⊥”]

Attributed Point-to-Point Communication in R-CHECK 13

Intuitively, the client is either repeatedly trying to connect to a server when it
is not yet paired to a high rating server (rating ̸= “H”) as in lines 2–3, or is ready
to supply a dissolve to its current partner as in lines 10–11; notice the top-level
nondeterministic choice + at line 10. In the former case, the client uses a blocking
get-command to establish connection to any server that enhances its situation.
That is, it does not accept a server with rating similar to its own (rating ̸= RT).
If interaction is possible, the client sets rating to the rating of the server, swaps
its current partner with the new one and stores the link communicated in the
variable lnk. Afterwards, the client sends its information to the new server using
the received link, but in case it has a previous connection, it also needs to
disconnect by issuing a get-command targeting its previous partner, as shown in
the first nondeterministic choice +.

Now, a server uses the local variables rating, Partner, xPartner, lnk, demand, pid
to control its behaviour, where “rating” stores the server rating, pid temporarily
stores the locality of a potential partner, and all other are defined as before.

A generic server’s initial condition θs is: demand = Partner = xPartner = pid = ⊥,
specifying that the server is not connected to any client. We can later create
different servers with different rating and private links. The receive guard grs is
the same as the client’s one. Now, the behaviour of a server is reported in the
R-CHECK process PS below:

PS ≜ repeat
⟨demand ̸= “L”⟩Supply@any(Act = “connect”,

RT = rating, ID = id, LNK = lnk)[];

[

⟨Partner = “⊥”⟩lnk?[Partner = ID; demand := D]

+

⟨Partner ̸= “⊥” ∧ demand = D⟩lnk?[pid := ID];

Get(true)@pid[pid := “⊥”]

+

⟨Partner ̸= “⊥” ∧ demand ̸= D ∧ D ̸= “H”⟩lnk?
[Partner = ID; demand := D]

]

+ ⟨true⟩Supply@self(Act = “dissolve”)
[rating := Partner := xPartner := lnk :=“⊥”]

Similarly, the server is either willing to supply connection (line 2-3) to a client
or dissolve from current client (last two lines). In the former case, the server only
accepts clients if its current assigned demand is not low “L” (i.e., optimal case for
servers). In that case, it supplies a connect tuple, its own rating, locality, and a
private link for further communication. Afterwards, the server decides if it should
establish this connection. If the server does not have a partner, it will accept
any connection. Thus, it stores the client locality and demand. If the server is

14 Y. Abd Alrahman et al.

connected, but the demands of the new client is the same of current one, the
server has no incentive to connect, and thus issues a get command targeting the
new client (through the locality stored in pid) to dissolve. The last case, if the
new client improves the server’s condition, the server accepts it. That is, if the
demand of the new client is different from the current one, the server establishes
the connection.

As opposed to the protocol written in AbC [3], this one is very simple and
compact, and thus more amendable to formal verification. Moreover, progress
towards stability and deadlock-freedom are guaranteed given that the number
of the clients is equal to the number of server, which is anyway the assumption
in [3] and a necessary condition for stability.

We can easily create an R-CHECK system and verify its behaviour as follows.

system = PC(client1, demand = “L”) ∥ PC(client2, demand = “H”) ∥ PC(client3, demand = “H”)
∥ PS(server, rating = “L”) ∥ PS(server, rating = “L”) ∥ PS(server, rating = “H”) (1)

Namely, we have 3 clients, one with low demands and two with high demands.
We have also created 3 servers with only one high rating profile. Now, we can
use the following formulas to reason individually and collectively.

∧
k∈PC

((k − Partner = ⊥) → G[getter = k ∧ p2p]F⟨sender = k ∧ ch ̸= ⋆⟩true) (i)

FG(
∧

k∈PC

(k − Partner ̸= ⊥) ∧
∧

j∈PS

(j − Partner ̸= ⊥)) (ii)

The first formula specifies that if any client is not paired then when it
attempts paring with a server, it must always eventually initiates a non-broadcast
communication with it. Notice that this formula impose an order such that p2p
communication happens first.

The second formula ensures that after a while the protocol converges, and all
servers and clients stay connected.

6 Concluding Remarks

We have augmented ReCiPe and R-CHECK with point-to-point communication
as a primitive, beyond their original broadcast and multicast communication
modes. Our focus is on raising the level of abstraction and the feasibility of design.
The idea is that the objective of any modelling activity is to eventually reason
about the design and verify its goals. Thus, we need to provide a high-level set
of primitives that make modelling easier and produce models that are amenable
to formal verification. We have argued how this new set of primitives enables
better modelling of multi-agent systems, through an illustrative case study we
can succinctly express in our extended language, but more challenging for existing
languages. Previously, ReCiPe could only encode point-to-point communication
through a protocol of coordination on existing broadcast and multicast channels,
allowing for interference. With the new primitives, point-to-point communication
can be modelled in a way that preserves the integrity of the communication.

Attributed Point-to-Point Communication in R-CHECK 15

Related work Point-to-point communication is a common communication mode
systems use to exchange messages in a synchronous manner. The π-calculus [18]
uses it as its only mode of communication, but only through reconfigurable
channelled communication. There is a classical result that other modes, like
channelled broadcast, cannot be encoded well in π-calculus, and that vice-versa
channelled broadcast is not enough to encode channelled point-to-point [12]. The
π-calculus does not support attribute-based communication either, unlike our
approach.

As for attribute-based formalisms, we find approaches such as AbC [9], which
(as discussed in Sect. 5) do not handle point-to-point communication and thus
requires encoding a protocol to enable this over multiple time steps. Carma is an
example of an attribute-based approach that handles both broadcast and unicast.
It is a language for defining and reasoning quantitatively about collective adaptive
systems [16]. Like R-CHECK, they support attribute-based communication, so
that communication can be established based on attributes. However, they do
not support reconfiguration based on channels. Channels are statically known,
and cannot be passed at runtime. In Carma, unicast is defined over channels,
guarded by predicates over agent attributes (similar to our guards over pv).
While R-CHECK allows for similar unicast based on predicates, the agents can
also directly refer to the identity of an agent. Such localities can be encoded as
attributes in Carma, however, and unlike our approach, this does not guarantee
that communication is safe from interference by other agents, since agents can
modify their attributes maliciously.

Instead of channelled point-to-point communication, our approach supports
purely attribute-based or locality-based communication. This allows for a level of
anonymity: the supplier and getter do not need to know each other or know the
proper channel to communicate on, while localities can be learned at runtime.

Another approach to modelling processes is that of tuple spaces (e.g., [10,11]),
dropping entirely channels and using solely localities. Here, agents do not com-
municate directly, but through retrieving and storing tuples in tuple spaces. In
these approaches, tuple insertion cannot be blocked, and retrieval is based on
predicates over the desired tuple. Our form of unicast cannot be modelled in
these approaches, given its anonymous nature. Consider that relying on tuple
spaces makes the communication indirect and asynchronous, while in our ap-
proach the communication is synchronous. SCEL [11] is an example of such an
approach, allowing higher-order communication, since processes can be stored
and retrieved in tuples. However, tuple spaces can grow arbitrarily large, which
poses a challenge to model checking.

With regards to connector-based approaches such as BIP [6], the communica-
tion structure is defined a priori using a set of connectors allowing a wide variety
of possible communication modes. However, the structure is static and thus there
is no reconfiguration as in R-CHECK.

References

1. Abd Alrahman, Y., Azzopardi, S., Di Stefano, L., Piterman, N.: Language support

16 Y. Abd Alrahman et al.

for verifying reconfigurable interacting systems. Int. J. Softw. Tools Technol. Transf.
25(5), 765–784 (2023). https://doi.org/10.1007/S10009-023-00729-8, https://doi.
org/10.1007/s10009-023-00729-8

2. Abd Alrahman, Y., De Nicola, R., Loreti, M.: A calculus for collective-
adaptive systems and its behavioural theory. Inf. Comput. 268 (2019).
https://doi.org/10.1016/j.ic.2019.104457

3. Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming interactions in collec-
tive adaptive systems by relying on attribute-based communication. Sci. Comput.
Program. 192, 102428 (2020). https://doi.org/10.1016/j.scico.2020.102428

4. Abd Alrahman, Y., Perelli, G., Piterman, N.: Reconfigurable interaction for MAS
modelling. In: Seghrouchni, A.E.F., Sukthankar, G., An, B., Yorke-Smith, N. (eds.)
Proceedings of the 19th International Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’20, Auckland, New Zealand, May 9-13, 2020. pp.
7–15. International Foundation for Autonomous Agents and Multiagent Systems
(2020). https://doi.org/10.5555/3398761.3398768

5. Abd Alrahman, Y., Piterman, N.: Modelling and verification of reconfigurable
multi-agent systems. Auton. Agents Multi Agent Syst. 35(2), 47 (2021).
https://doi.org/10.1007/s10458-021-09521-x

6. Bliudze, S., Sifakis, J.: The algebra of connectors—structuring interac-
tion in BIP. IEEE Transactions on Computers 57(10), 1315–1330 (2008).
https://doi.org/10.1109/TC.2008.26

7. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover,
S., Roveri, M., Tonetta, S.: The nuxmv symbolic model checker. In: Computer
Aided Verification - 26th International Conference, CAV 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceed-
ings. Lecture Notes in Computer Science, vol. 8559, pp. 334–342. Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9 22

8. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artif. Intell.
42(2-3), 213–261 (1990). https://doi.org/10.1016/0004-3702(90)90055-5

9. De Nicola, R., Duong, T., Inverso, O.: Verifying abc specifications via emulation.
In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods,
Verification and Validation: Engineering Principles - 9th International Symposium
on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece,
October 20-30, 2020, Proceedings, Part II. Lecture Notes in Computer Science, vol.
12477, pp. 261–279. Springer (2020). https://doi.org/10.1007/978-3-030-61470-6 16,
https://doi.org/10.1007/978-3-030-61470-6_16

10. De Nicola, R., Gorla, D., Pugliese, R.: On the expressive power of
KLAIM-based calculi. Theor. Comput. Sci. 356(3), 387–421 (2006).
https://doi.org/10.1016/J.TCS.2006.02.007

11. De Nicola, R., Latella, D., Lluch-Lafuente, A., Loreti, M., Margheri, A., Massink,
M., Morichetta, A., Pugliese, R., Tiezzi, F., Vandin, A.: The SCEL language:
Design, implementation, verification. In: Wirsing, M., Hölzl, M.M., Koch, N.,
Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems - The
ASCENS Approach, Lecture Notes in Computer Science, vol. 8998, pp. 3–71.
Springer (2015). https://doi.org/10.1007/978-3-319-16310-9 1, https://doi.org/
10.1007/978-3-319-16310-9_1

12. Ene, C., Muntean, T.: Expressiveness of point-to-point versus broadcast communi-
cations. In: Ciobanu, G., Păun, G. (eds.) Fundamentals of Computation Theory.
pp. 258–268. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

13. Fagin, R., Halpern, J., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT
Press (1995)

https://doi.org/10.1007/S10009-023-00729-8
https://doi.org/10.1007/s10009-023-00729-8
https://doi.org/10.1007/s10009-023-00729-8
https://doi.org/10.1016/j.ic.2019.104457
https://doi.org/10.1016/j.scico.2020.102428
https://doi.org/10.5555/3398761.3398768
https://doi.org/10.1007/s10458-021-09521-x
https://doi.org/10.1109/TC.2008.26
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1016/0004-3702(90)90055-5
https://doi.org/10.1007/978-3-030-61470-6_16
https://doi.org/10.1007/978-3-030-61470-6_16
https://doi.org/10.1016/J.TCS.2006.02.007
https://doi.org/10.1007/978-3-319-16310-9_1
https://doi.org/10.1007/978-3-319-16310-9_1
https://doi.org/10.1007/978-3-319-16310-9_1

Attributed Point-to-Point Communication in R-CHECK 17

14. Hannebauer, M.: Autonomous Dynamic Reconfiguration in Multi-Agent Systems,
Improving the Quality and Efficiency of Collaborative Problem Solving, Lecture
Notes in Computer Science, vol. 2427. Springer (2002). https://doi.org/10.1007/3-
540-45834-4

15. Huang, X., Chen, Q., Meng, J., Su, K.: Reconfigurability in reactive multiagent
systems. In: Kambhampati, S. (ed.) Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-
15 July 2016. pp. 315–321. IJCAI/AAAI Press (2016), http://www.ijcai.org/
Abstract/16/052

16. Loreti, M., Hillston, J.: Modelling and analysis of collective adaptive systems
with CARMA and its tools. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.)
Formal Methods for the Quantitative Evaluation of Collective Adaptive Sys-
tems - 16th International School on Formal Methods for the Design of Com-
puter, Communication, and Software Systems, SFM 2016, Bertinoro, Italy, June
20-24, 2016, Advanced Lectures. Lecture Notes in Computer Science, vol. 9700,
pp. 83–119. Springer (2016). https://doi.org/10.1007/978-3-319-34096-8 4, https:
//doi.org/10.1007/978-3-319-34096-8_4

17. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Inf. Comput.
100(1), 1–40 (1992). https://doi.org/10.1016/0890-5401(92)90008-4

18. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, II. Inf. Comput.
100(1), 41–77 (1992). https://doi.org/10.1016/0890-5401(92)90009-5

19. Piterman, N., Pnueli, A.: Temporal logic and fair discrete systems. In: Clarke,
E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking,
pp. 27–73. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8 2, https:
//doi.org/10.1007/978-3-319-10575-8_2

20. Wooldridge, M.J.: An Introduction to MultiAgent Systems, Second Edition. Wiley
(2009)

https://doi.org/10.1007/3-540-45834-4
https://doi.org/10.1007/3-540-45834-4
http://www.ijcai.org/Abstract/16/052
http://www.ijcai.org/Abstract/16/052
https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2

	Attributed Point-to-Point Communication in R-CHECK

